• SEL ICB ICT 团队(电子邮件:ICT@selondonics.nhs.uk,电话:020 8176 5400。自助服务门户:https://nhssel.haloitsm.com/portal/home) • Bromley GP IT(IT 服务台电子邮件:BHC.ITHelpdesk@nhs.net。电话:0208 315 8702 • 自助服务门户:BHC 自助服务门户 - 登录(haloservicedesk.com)社区、外展或其他网站: • 您需要一个链接来安装该软件。您可能需要与您的 IT 团队交谈才能完成此操作。 • 请联系 hin.cvd@nhs.net 获取链接
摘要:c-MET 原癌基因 (MET) 在肺癌发生中起着重要作用,影响癌细胞的存活、生长和侵袭性。非小细胞肺癌 (NSCLC) 中的 MET 受体是潜在的治疗靶点。高输出下一代测序技术的发展使得能够更好地识别 MET 通路中的异常,例如 MET 外显子 14 (METex14) 突变。此外,对表皮生长因子受体 (EGFR) 和酪氨酸激酶抑制剂 (TKI) 耐药机制的分析表明,MET 扩增作为 TKI 治疗的 EGFR 突变 NSCLC 患者的逃逸机制的重要性。本综述总结了关于 MET 及其异常的实验室发现、非 EGFR 突变 NSCLC 中 METex14 变异和 MET 扩增的试验结果以及 EGFR 突变 NSCLC 中对 TKI 的获得性耐药性。首次使用抗 MET 药物对非选择性 NSCLC 患者或因 MET 过表达而选择性的患者进行试验的结果令人失望。目前,两种情况似乎是使用抗 MET 药物治疗这些患者最有希望的情况:携带 METex14 的肿瘤和在 TKI-EGFR 下发生突变的 EGFR 敏感突变,具有 MET 扩增耐药机制或 EGFR 耐药突变。关键词:非小细胞肺癌,MET 外显子 14,MET 扩增,MET 通路
政治和军事目标。”但这在实践中意味着什么则是另一回事。MC 0628 的重要性就在于此,因为北约一直在努力处理一种工具和概念——信息和影响力——它可能和孙子一样古老,但却因文化变革和革命性技术而得到了增强和改变。在 0628 之前,我们的努力往往是即兴的,或者是通信学科之间未解决的冲突的产物。我们一直努力,有时也取得成功,但军事结构内持续进步的基础却不存在。在北约总部,由于培训、知识或通信学科内合作意愿的差异,年度人员轮换经常会出现效率的大幅上升或下降。很多时候,个人决定走自己的路并感到自由,或者面对“更了解情况”的高级职员而束手无策。如果所有这些听起来有些夸张,事实并非如此。在我担任首席战略委员会主席的十年中,我一次又一次地看到了这种情况。与此同时,我们的很多努力都被内部争论所分散,是的,有时这些争论会演变成个人问题。然而,大多数时候,担任战略委员会职务的人都希望得到一致、明确的指导,而我们却无法轻易地给予他们。我必须再次强调,许多优秀的人做了很多出色的工作,在推动战略委员会前进方面也取得了进展。然而,缺乏
©Alstom SA2024。保留所有权利。本文档中包含的信息仅表示指示。没有给出或不应依靠保修或应依靠它是完整或正确的,或者将适用于任何特定项目。这将取决于技术和商业环境。它不承担任何责任,并且可能会更改,恕不另行通知。严格禁止在没有阿尔斯通的明确书面授权的情况下向第三方进行复制,使用,改变或披露。
更广泛的背景 在这项工作中,我们介绍了一种可再生氢运输的创新方法,它可能对未来的全球氢经济产生重大影响。我们早就知道氢,特别是“绿色”氢,作为清洁能源的载体有着巨大的前景。然而,储存和运输这种难以捉摸的能源载体的挑战仍然存在。为了解决这些障碍,我们的研究团队对现有商品进行了新的审视:我们提出二甲醚 (DME)/CO 2 储存循环作为长距离点对点氢运输的潜在游戏规则改变者。DME 用作氢载体,而 CO 2 (在目的地释放氢的偶联产物) 同时在同一容器中运输回以实现可持续再利用。该方法在关键指标上优于目前的领先者氨和甲醇,在能源效率、质量流量、水消耗和毒理学风险降低方面具有令人瞩目的优势。通过有效解决全球氢气运输面临的最大障碍之一,我们希望我们的研究成果能够激发进一步的研究和创新,以实现具有成本效益的全球氢气交易,从而实现全球完全去化石能源系统。
人工智能 (AI) 是一种使计算机能够解决问题并执行传统上需要人类智能的任务的技术。来自电子病历和功能强大的现代微型计算机的大量医疗数据的可用性促进了医学领域 AI 的发展。AI 已证明其适用于许多不同的医学领域,例如药物发现、诊断放射学和病理学,以及心脏病学和外科手术中的介入应用。然而,直到今天,AI 很少用于麻醉学的临床实践。尽管文献中已经发表了大量关于 AI 在麻醉学中的应用的研究,但已开发的用于商业用途或准备进行临床试验的机器人系统数量仍然有限。本文确定并讨论了 AI 系统的局限性,包括不正确的医疗数据格式、个体患者差异、当前 AI 系统能力不足、麻醉师缺乏使用 AI 的经验、系统不可靠、无法解释的 AI 结论和严格的规定。为了确保麻醉师对人工智能系统的信任并改善其在日常实践中的应用,应对系统和算法进行严格的质量控制。此外,麻醉学人员应该在人工智能系统的开发中发挥不可或缺的作用,然后我们才能看到更多的人工智能融入临床麻醉学。关键词
Wg Cdr (Retd) PK Raveendran SC Wg Cdr Malteesh Prabhu 国家飞行测试中心,航空发展局 班加罗尔 560 015,印度 摘要 印度轻型战斗机 (Tejas) 项目已成功完成全面工程开发 (FSED) 阶段,目前处于初始作战能力 (IOC) 审批阶段。Tejas 计划是印度在军事航空领域追求技术卓越的最佳典范。因此,该计划对所有参与的团体和个人来说都是一次很好的学习经历。本文重点介绍了从这个具有挑战性的计划中吸取的一些教训。术语 ADA 航空发展机构 BMS 刹车管理系统 CLAW 控制律 DFCC 数字式飞行控制计算机 ECS 环境控制系统 EU 电子单元 FCS 飞行控制系统 FSED 全尺寸工程开发 HAL 印度斯坦航空有限公司 HUD 平视显示器 IFCS 综合飞行控制系统 IOC 初始作战能力 IV&V 独立验证和确认 LCA 轻型战斗机 MFD 多功能显示器 MFK 多功能键盘 MFR 多功能旋转(开关) NFTC 国家飞行测试中心 NWS 前轮转向 RFA 行动请求 SOP 标准操作程序 UFCP 前控制面板 Raveendran, P.K.; Prabhu, M. (2005) Tejas 飞行测试:迄今为止的经验教训。飞行测试中 - 分享知识和经验(第 14 页
尽管广泛实施了预防策略,但医院相关感染 (HAI) 的患病率仍然很高。多重耐药菌在 HAI 中的患病率很高。2019 年,世界卫生组织将抗菌素耐药性保留为全球十大卫生问题之一。疫苗的开发可能有助于抗击抗菌素耐药性,以减轻 HAI 的负担。金黄色葡萄球菌、革兰氏阴性菌和艰难梭菌是 HAI 中最常见的病原体。因此,开发针对这些病原体的疫苗至关重要。现阶段,获得针对金黄色葡萄球菌和革兰氏阴性菌的有效疫苗的目标尚未实现。但是,我们可以期待在不久的将来推出针对艰难梭菌的疫苗。此外,确定可能从这些疫苗中受益的人群也很复杂,因为高危患者对疫苗的反应不佳,或者接种疫苗可能为时已晚,此时他们已经面临风险。只有当医护人员 (HCW) 在患者病原体的传播和获得中发挥作用、疫苗有效减少病原体携带以及疫苗覆盖率足以保护患者时,为医护人员接种这些病原体疫苗才会产生影响。应在患者和医护人员中评估和解决对这些潜在疫苗的接受度。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 开放获取的文章。
数百年来,麦角菌一直是人类与谷物关系的祸根。麦角菌是许多加拿大谷物的真菌病原体,导致受生物碱霉菌毒素污染的深色菌核生长。麦角生物碱合成 (EAS) 基因簇产生的代谢物也与严重危害(包括麦角中毒)以及令人兴奋的潜在治疗方法有关。在本研究中,我们探索了麦角菌核的历史参考样本,以及 2014 年至 2024 年的数千个未表征的收获样本。该项目的目标是以比以前更大的规模检查麦角菌的附属基因组。进一步了解麦角的地理和环境差异以及基因型变异可能会为农业管理和制药潜力提供发展。
合作伙伴关系的第一年开展了大量活动。项目和计划交付已建立良好,目前有几个项目处于交付阶段。战略能源伙伴关系 (SEP) 合同合资企业董事会已经认识到,虽然进展非常积极,但由于收到公共资金,理事会向 SEP 提出的一些项目是交易性的(规模较小、不具战略性或与更广泛的机会相关)。目前正在讨论如何确定更具战略性和整体性的机会(更大的计划和在机会之间建立联系),包括定期的战略董事会讨论。考文垂能源计划(第 2.3 节中解释)将提供这种方法的一个关键组成部分,以确保我们对城市产生巨大而持久的影响。表 2.0 - 2024/25 年项目的影响(按计划)