∗ 加州大学伯克利分校经济学系和 NBER;电子邮件:ul-rike@econ.berkeley.edu † 宾夕法尼亚大学沃顿商学院金融系和美国证券交易委员会;电子邮件:jwachter@wharton.upenn.edu。美国证券交易委员会对任何美国证券交易委员会员工或委员的私人出版物或声明不承担任何责任。本章表达了作者的观点,并不一定反映委员会、委员或其他工作人员的观点。我们感谢 James Paron 提供的宝贵研究协助。
在过去的几年中,针对 KIT 突变或 PDGFR 突变的胃肠道间质瘤 (GIST) 的原发性和继发性驱动突变的治疗取得了一些进展。GIST 中的主要驱动突变包括 KIT (75%–80%) 和血小板衍生的生长因子受体 α (PDGFRA;8%–10%),一小部分 KIT 和 PDGFRA 突变阴性 (10%–15%),这些突变含有其他分子改变,例如琥珀酸脱氢酶 (SDH) 缺乏症 (大多数)、BRAF 和神经纤维瘤病 1 型 (NF1) 突变。1根据先前的随机研究 2、3,伊马替尼、舒尼替尼和瑞戈非尼分别是三种获批用于不可切除/转移性 GIST 患者的一线、二线和三线治疗的药物(图 1)。最近,监管机构批准利普替尼用于治疗四线胃肠道间质瘤,批准阿伐替尼用于治疗 PDGFR 外显子 18(D842 V)突变的胃肠道间质瘤。伊马替尼耐药可分为原发性耐药和继发性耐药。原发性耐药的主要原因是 D842 V PDGFRA 突变,这构成
我们调查了市场对连续收购者转变策略的反应。我们收集了四个高科技行业 204 家连续收购者的数据,并使用 March 的探索-利用框架对这些公司的 1,415 起收购进行分类。然后,我们区分了一系列基于开发的收购之后进行的基于探索的收购。我们的结果表明,市场在对收购做出反应时会采取投资组合的视角。为了支持双元性文献,我们表明市场对从一种策略类型转向另一种策略类型的转变反应积极。放大转变的方向,我们发现,与其他选择相比,市场对从开发转向探索的反应更为积极。通过这样做,我们为收购动机文献做出了贡献,表明事先公告在解释市场反应方面很重要,并且我们为双元性文献做出了贡献,表明市场青睐在探索和开发之间摇摆不定的公司。
人类的视觉系统能够处理连续的视觉信息流,但大脑在连续的视觉处理过程中如何编码和检索近期的视觉记忆仍不清楚。本研究探讨了在连续的视觉刺激下,工作记忆保留过去信息的能力。然后我们提出了一项新任务——记忆解开,旨在从 fMRI 信号中提取和解码过去的信息。为了解决过去记忆信息干扰的问题,我们设计了一种解开的对比学习方法,灵感来自前摄干扰现象。该方法将相邻 fMRI 信号之间的信息分离为当前和过去成分,并将它们解码为图像描述。实验结果表明,该方法有效地解开了 fMRI 信号中的信息。这项研究可以推进脑机接口并缓解 fMRI 中时间分辨率低的问题。1
4) Scheffer IE、Berkovic S、Capovilla G 等。ILAE 癫痫分类:ILAE 分类和术语委员会立场文件。癫痫 2017;58:512-21。5) Gibbs FA、Gibbs EL。脑电图图集。第 1 卷:方法和对照。马萨诸塞州雷丁:Addison-Wesley,1951 年。6) Yoshida Harumi。应用等电位脑电图对小儿脑电图发育的研究。 脑电图和肌电图 1984 ; 12 : 248-60。7) Yoshinaga H, Koutroumanidis M, Kobayashi K, et al. Panayiotopoulos 综合征的脑电图偶极子特征。癫痫 2006 ; 47 : 781-7。8) Seeck M, Koessler L, Bast T, et al. IFCN 的标准化脑电图电极阵列。临床神经生理学 2017 ; 128 : 2070-7。9) Otsubo H, Sharma R, Elliott I, Holowka S, Rutka JT, Snead OC 3rd. 通过侵入性监测硬膜下电极确认患有右额中央癫痫的青少年的两个脑磁图癫痫灶。癫痫1999;40:608-13。10) Shiraishi H、Ahlfors SP、Stufflebeam SM 等。比较三种用脑磁图定位发作间期癫痫样放电的方法。J Clin Neurophysiol 2011;28:431-40。11) Kobayashi K、Akiyama T、Oka M、Endoh F、Yoshinaga H。West 综合征患者在高峰失常期间出现快速(40-150 Hz)振荡风暴。Ann Neurol 2015;77:58-67。12) Kobayashi K、Watanabe Y、Inoue T、Oka M、Yoshinaga H、Ohtsuka Y。儿童睡眠诱发的电癫痫持续状态中头皮记录的高频振荡。癫痫2010;51:2190-4。13) Cao J,Zhao Y,Shan X,等。基于脑电图记录的大脑功能和有效连接:综述。Hum Brain Mapp 2022;43:860-79。14) Willett FR,Avansino DT,Hochberg LR,Henderson JM,Shenoy KV。通过手写实现高性能的脑到文本通信。Nature 2021;593:249-54。15) Jing J,Sun H,Kim JA,等。脑电图解释过程中癫痫样放电专家级自动检测的开发。JAMA Neurol 2020;77:103-8。16) Kobayashi K,Shibata T,Tsuchiya H, Akiyama K. 基于人工智能的儿科头皮脑电图癫痫放电检测:一项初步研究。Acta Med Okayama 2022;76:617-24。17)Scheffer LK、Xu CS、Januszewski M 等。成年果蝇中枢脑的连接组和分析。Elife 2020;9:e57443。18)Cutsuridis V、Cobb S、Graham BP。海马 CA1 微电路模型中的编码和检索。海马 2010;20:423-46。19)Kobayashi K、Akiyama T、Ohmori I、Yoshinaga H、Gotman J。动作电位导致用远离神经元的电极记录的癫痫高频振荡。临床神经生理学2015;126:873-81。
在研究人类微生物组深入研究的摘要技术进步使您能够鉴定与健康和疾病相关的微生物特征。这证实了微生物群在维持体内平衡和宿主健康状况方面的关键作用。如今,有几种调节微生物群组成以有效改善宿主健康的方法;因此,基于肠道微生物群的治疗疗法的发展正在经历快速生长。 在这篇综述中,我们总结了肠道微生物群对传染病和癌症发展的影响,这是目前正在开发的基于微生物组疗法的两个主要靶标。 我们分析了肠道微生物群和传统药物之间的双向相互作用,以强调肠道微生物组成对药物有效性和治疗反应的影响。 我们探讨了目前可用于调节本生态系统的不同策略,从第一代干预策略到更复杂的第二代微生物组疗法及其监管框架。 最后,我们可以快速概述我们认为这些策略的未来,即通过使用人工智能(AI)算法开发的第三代微生物组疗法。如今,有几种调节微生物群组成以有效改善宿主健康的方法;因此,基于肠道微生物群的治疗疗法的发展正在经历快速生长。在这篇综述中,我们总结了肠道微生物群对传染病和癌症发展的影响,这是目前正在开发的基于微生物组疗法的两个主要靶标。我们分析了肠道微生物群和传统药物之间的双向相互作用,以强调肠道微生物组成对药物有效性和治疗反应的影响。我们探讨了目前可用于调节本生态系统的不同策略,从第一代干预策略到更复杂的第二代微生物组疗法及其监管框架。最后,我们可以快速概述我们认为这些策略的未来,即通过使用人工智能(AI)算法开发的第三代微生物组疗法。
1 → “这是除法。” 6 → “这是加法。不错,但让我们更富有想象力。” 9 → “这是乘法。不错。” 27 → “这是幂。不错。” 33 → “你把三放在一起了。这很不错。” 8 → “你用倒三把它们叠在一起。这很棒。” 其他 → “这是我没有想到的答案。”
摘要:对微生物与精神疾病之间的关联进行了综述,包括病史,相关定义,与精神疾病相关的感染因素,复杂的互动感染,全负负荷理论,病理生理学,心理免疫学,心理肉食免疫学,临床表现,临床表现,早期生活感染,临床评估,临床评估和治疗。关于精神疾病病因的观点已从恶魔的财产发展为基于生物系统的模型,包括基因表达,环境触发器,免疫介质和传染病。微生物与多种精神障碍有关,包括自闭症,精神分裂症,躁郁症,抑郁症和焦虑症,以及自杀,侵略性或暴力行为。与至少与这些疾病有关的特定微生物包括曲霉,贝贝西亚,巴尔托内拉,伯尔纳病毒,伯氏伯氏病,伯罗利亚病(莱姆病),念珠菌,念珠菌,衣原体,冠状病毒,冠状病毒,冠状病毒(例如 Epstein–Barr virus, hepatitis C, herpes simplex virus, human endogenous retroviruses, human immunodeficiency virus, human herpesvirus-6 (HHV-6), human T-cell lymphotropic virus type 1, influenza viruses, measles virus, Mycoplasma , Plasmodium , rubella virus, Group A Streptococcus (PANDAS), Taenia solium,Toxoplasma Gondii,treponema Pallidum(梅毒),锥虫瘤和西尼罗河病毒。认识到与大型跨学科研究,教育和治疗方案发展的微生物和精神疾病关联可能会预防和减少精神疾病的发病率,残疾和死亡率。
下一代测序(NGS)是用于疾病诊断的高效遗传诊断测试。尽管Sanger方法被用作基因组研究中的传统方法,但随着技术的发展,NGS方法的使用一直在增加。下一代测序的基础是由Allan Maxam-Walter Gilbert和2个诺贝尔奖获得者弗雷德里克·桑格(Frederick Sanger)开发的方法。最初,第一代测序方法在几天内完成了巨大的努力,完成了DNA的某个部分,而在今天的技术中,即使是最复杂的有机体的整个DNA也在1天内测序。第二代和第三代测序方法已开发出,成本,时间和测序准确性的提高。从这些方法获得的数据用生物信息学解释,并有助于下一代测序技术的发展。这些发展提高了人们对下一代测序与DNA或RNA之间关系的研究的兴趣,具体取决于疾病。在本综述中,详细提及了下一代测序技术的过去和现在方法,并审查了这些方法的困难和便利性。