完整的时间表和安排。学生可以参加正常的课堂课程,但仍需要根据他们目前的症状进行一些调整。继续与学生合作,找出任何可能加重症状的特定课堂活动。如果这不会加重脑震荡症状,学生可以参加乐队和音乐课。仍然不允许进行所有体育活动、举重和体育课,但学生可以开始参加非体育课外活动(只要可以忍受)。当学生的认知恢复率尚未达到 100% 时,课堂选项可能包括:• 提供导师、阅读者或笔记记录员来协助课堂表现。• 延长一段时间来完成测验、考试、论文等。• 允许课堂出勤,但推迟考试、测验、论文等,直到认知功能得到改善。• 提供调整以尽量减少嘈杂/刺激环境或允许他们在课堂上优先就座,在学生可以忍受的范围内逐渐增加学校参与度和独立性。目标是实现无需住宿的全面返校。
1. 购买电力协议。SmartEnergy Holdings, LLC(“SmartEnergy”),www.smartenergy.com,营业地址为 400 Madison Avenue, Suite 9A, New York, NY 10017,邮寄地址为 7450 Tilghman Street, Suite 100, Allentown, PA 18106-9030,www.smartenergy.com,是一家电力供应商,经马里兰州公共服务委员会(“MPSC”)授权,许可证号为 IR-3783,可向马里兰州的住宅和商业客户供应电力。经 SmartEnergy 和您的电力公司(“公用事业公司”)接受,您同意购买,SmartEnergy 同意根据本文件(“条款和条件”)中规定的条款和条件供应您的所有电力。SmartEnergy 将供应您电力的发电部分,而您的公用事业公司将继续提供配送服务。在此使用的“我们”、“我们”和“我们的”指的是 SmartEnergy,而“您”和“您的”指的是客户。
储能技术可以为电网及其弹性带来巨大好处。储能可以在停电期间提供备用电源,并可以帮助客户和电网运营商管理电力负荷;储能可以通过在风能或太阳能生产时吸收多余的风能或太阳能,并在需要能源时释放,从而减少可再生能源的削减;储能可以推迟升级或建造新的输配电基础设施的需要,或者可以提高新建项目的经济性;当需要使用峰值发电机(通常使用排放量最高的燃料)发电时,储能可以减少峰值负荷,从而减少排放并增加清洁电力消费。虽然储能通常被称为“瑞士军刀”,可以根据电网的需求进行调整,提供这些不同类型的服务并从储能技术中获得最高价值,但储能需要进入市场并发出明确的信号以鼓励储能以所需的方式运行。
对培根和艾尔蒂斯假说的反对意见之一是,其他政府经常性消费占 GDP 比重较高的国家并没有像英国一样遇到制造业问题。国际数据显示,政府消费与制造业比重呈反比关系——平均而言,政府支出比重每增加 1 个百分点,制造业在 GDP 中的比重就会降低 0.2 个百分点。虽然这种关系很弱,但它确实支持了培根和艾尔蒂斯假说。然而,英国(黑色)的制造业比重低于除五个国家(卢森堡、希腊、挪威、澳大利亚和冰岛)以外的所有国家,并且这一比重明显低于其他主要工业国家。英国的实际制造业比重比图 A1 中的平均关系低 6 个百分点。如果我们考察意大利,政府消费在GDP中的占比比英国高出近8个百分点,但2019年制造业在意大利GDP中的占比为16.6%,而英国为9.7%。
识别网络中的关键节点是一项经典的决策任务,许多方法难以在适应性和效用之间取得平衡。因此,我们提出了一种方法,该方法可以通过大语言模型(LLMS)赋予进化算法(EA),以生成一个称为“ Score_nodes”的函数,该函数可以进一步用于根据分配的分数来识别重要的节点。我们的模型由三个主要组成部分组成:手动初始化,种群管理和基于LLMS的进化。它从初始种群中演变,并手动创建了一组设计的节点评分功能。llms利用他们强大的上下文理解和丰富的编程技能来对个人进行交叉和突变操作,从而产生出色的新功能。然后将这些功能分类,排名和消除,以确保人口的稳定发展,同时保留多样性。广泛的实验证明了我们方法的出色性能,与其他最先进的算法相比,它表明了其强大的发电能力。它可以始终如一,有序地生成各种和高效的节点评分功能。可以在此工作中重现所有结果的所有源代码和模型在此链接上可公开可用:https://anonymon.4open.science/r/llm4cn-6520
解决复杂的计划问题需要大型语言模型(LLMS)明确对状态过渡进行建模,以避免规则违规,遵守限制并确保操作性 - 这是由自然语言固有的歧义所阻碍的任务。为了克服这种歧义,规划域定义语言(PDDL)被杠杆化为一种计划,以实现精确和正式的状态描述。使用PDDL,我们可以生成一个象征性的世界模型,其中经典的搜索算法(例如A ∗)可以无缝地找到最佳计划。但是,由于缺乏PDDL培训数据,直接生成具有当前LLM的PDDL域仍然是一个开放的挑战。为了应对这一挑战,我们建议扩大LLMS的测试时间计算以增强其PDDL推理功能,从而使高质量的PDDL域的产生。具体来说,我们引入了一种简单而有效的算法,该算法首先采用了最佳的N采样方法来提高初始解决方案的质量,然后通过口头化的机器学习以细粒度的方式优化解决方案。我们的方法在PDDL域的产生中大大优于O1-Mini,在两个任务上达到了超过50%的成功率(即,从自然语言描述或PDDL问题中生成PDDL域)。这是在不需要额外培训的情况下完成的。通过利用PDDL作为状态抽象,我们的方法能够在几乎所有竞争级的计划任务上都超过当前最新方法。