第 18 章 RAS 致癌基因的故事 221007bu3 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发育治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 18 章 RAS 致癌基因的故事 病毒中的 RAS 致癌基因。RAS 基因是人类癌症中一个特别重要的基因或致癌基因家族,它首次是在对致癌病毒的研究中发现的。1963 年的某个时候,在伦敦医院研究实验室癌症研究部工作的 Jennifer Harvey 给小鼠和大鼠接种了一只患有病毒诱发的白血病的大鼠的血浆。她定期将病毒从一只动物转移到另一只动物,从而诱发它们患上白血病。然而,那一年的一次,她注意到一些不寻常的东西,这为癌症的成因和治疗打开了一扇新的窗户(Harvey,1964 年)。接种了她一只白血病大鼠病毒的小鼠,除了常见的白血病(血液和淋巴结中有恶性细胞,而不是各种组织中的肿块)外,还意外地患上了实体瘤。后来发现,她的白血病病毒从大鼠自己的基因组中获取了一段 DNA 片段(拼接到其基因组中)。这段 DNA 现在是新病毒基因组的一部分,导致她的小鼠出现实体瘤型癌症肿块。此外,新的癌症基因被发现是正常基因 RAS 的突变版本(可能是大鼠肉瘤,突变版本最早是在大鼠肉瘤中发现的)。Harvey 的名字因新发现的 HRAS 致癌基因中的字母 H 而永垂不朽,HRAS 致癌基因是正常 HRAS 基因的突变形式。哈维的新病毒导致培养皿表面的细胞过度生长,形成“病灶”(图 18.1),其方式与温伯格团队后来在致癌基因研究中观察到的情况类似(第 15 章中的图 15.3)。电子显微镜图像中看到的哈维病毒颗粒具有非常不寻常的结构,类似于辐条轮(图 18.2)。
土壤水。通常,水中和表面上存在的细菌是无害的,但它们是其他自由生活生物的食物链的底部,例如真菌,原生动物,蠕虫和甲壳类动物。这些生物也可能存在于分配系统中,即使存在残留消毒剂,并且水仍然没有健康风险。但是,过度的微生物活性会导致美学质量恶化(例如的口味,气味和变色),并可能干扰用于监测健康意义参数的方法。因此,可能需要额外的治疗来控制分配系统中处理过的水的质量,以防止微生物的过度生长和任何相关的较大生命形式的发生(Awwa,1999)。在第2章中讨论了此主题,该主题提供了有关操作治疗过程的指南,以最大程度地减少水分配问题。保持良好的分配水质也将取决于分配系统的操作和设计(第3章),并且需要维护和调查程序以防止污染,并消除和防止内部存款的积累(第4章)。在系统上执行任何需要与输送水或内部表面接触的工作都会增加污染的风险。这种情况需要有据可查的卫生工作实践,如第5章第3-5章总结了维持微生物质量的实践。这些做法也与预防变色的水,气味和口味的问题有关。采样和监视在美学上既令人愉悦又安全的自来水非常重要,因为它会阻止消耗可能不安全的替代用品,即使它们似乎是这样。验证管道公共供水的微生物安全性的传统方法依赖于基于最终产品的采样策略,即自来水。描述微生物内容限制的准则或法规是由许多国家的政府制定法律制定的,正常的理由是,历史数据显示出合规的水是安全的。但是,这些准则和法规的有效性受到流行病学研究的质疑。对20世纪积累的数据的分析表明,一些微生物标准(例如异养板数,总大肠菌群和耐热大肠菌群的预测价值很小(WHO,2003年)。爆发有时会发生在饮酒符合此类标准时(Sobsey,1989; Craun,Berger&Calderon,1997)。这是因为某些病原体比标准标准中规定的指标微生物更难去除,或者对消毒过程具有更高的抵抗力,或者是因为采样频率太低而无法揭示污染,尤其是在短暂的时。微生物的识别和枚举很慢,因此不适合预警或控制目的。
-) 是一种可溶性阴离子,自然界中浓度较低,但作为固体弹药中广泛使用的氧化剂,由于 1997 年之前对该化合物的处置不受管制,它已成为全美地下水的重要污染物。高氯酸盐是甲状腺碘吸收的竞争性抑制剂,摄入高氯酸盐会导致甲状腺激素分泌减少,这对胎儿和新生儿的正常发育尤其令人担忧。最近的报告记录了乳制品和人类母乳中的高氯酸盐,表明其已上升到食物链的顶端。目前对这种化合物的修复通常涉及离子交换技术,虽然这种方法很有效,但只是将处理过的水中的高氯酸盐浓缩到盐水溶液中。相反,许多微生物能够呼吸高氯酸盐,将其转化为无害的氯化物。因此,生物修复被认为是去除和降解污染物的最有效方法,并且已经开发出许多策略来利用这些异化高氯酸盐还原菌 (DPRB)。传统的生物修复策略是基于使用廉价且容易获得的有机电子供体(如乙醇和醋酸盐)刺激 DPRB。虽然这些化合物可以有效地刺激高氯酸盐还原,但它们也会刺激微生物的大量生长,包括 DPRB 和非目标生物。生物的过度生长会导致生物污垢,这会导致处理失败,并刺激不必要的代谢,如铁和硫酸盐还原,从而产生有毒和恶臭的化合物。此外,添加不稳定的有机物会对生物修复方案产生较差的反馈控制,在饮用水处理的情况下,可能会导致下游消毒副产物 (DBP)。为了解决这些问题,研究了一种用于刺激 DPRB 的电化学系统。已经开发了各种电化学系统来刺激微生物代谢(第 1 章),但没有一种应用于高氯酸盐还原。该系统之所以具有吸引力,是因为它能够为微生物提供还原当量,用于还原高氯酸盐,而无需添加会刺激生长的碳。此外,改变可用电位和电流的能力提供了更严格的反馈控制和高氯酸盐的热力学靶向的可能性,但不会提供更多的电负性电子受体。研究了利用阴极电极作为高氯酸盐还原电子供体的实验(第 2 章)。在生物电反应器 (BER) 的阴极室中,利用蒽醌-2,6-二磺酸盐 (AQDS) 作为电子穿梭机对先前分离的 DPRB 的纯培养物进行测试。这些实验作为概念验证,并证明微生物可以成功地以这种方式还原高氯酸盐。然而,由于这些纯培养物在生长条件下无法在 BER 中存活,因此在阴极室中进行富集以分离能够长期发挥作用的微生物。从这种富集物中分离出两种新的 DPRB,并且
策略梯度算法对在执行学习中的应用显示出了令人印象深刻的结果,但长期以来,人们已经认识到,一些更正是为了改善收敛性;实施此类更正的几个众所周知的程序是对数势垒进行加强算法[23],信任区域策略优化TRPO [16]和近端策略优化(PPO,OpenAI的默认默认依据重新启动学习算法);所有人都使用正规化形式,即所有人都试图通过各种方法限制和控制策略更新。在这种一般环境中,我们将在此关注不同类型的正则化,并最具体地谈论多武装匪徒。虽然策略梯度算法显示出有趣的数值性能,但对MAB收敛的理论研究直到最近才见证了重要的进步。在[8]中证明,随机梯度程序对于线性二次调节器的一般情况而言,而Agarwal等人则具有很高的可能性。在Markov Prosess的一般框架下给出了[2]的理论结果,并在不同的策略参数中特别证明了收敛性;在我们在此处分析的软马克斯参数化的特定情况下,它们检查了三种解决此问题的算法。最初的方法涉及在目标上直接的策略梯度下降而没有改变。第二种方法 - 企业熵正规化,以防止参数过度生长,从而确保足够的探索。最后,他们研究了自然政策差异算法,并证明了与分配不匹配系数或特定维度特定因素无关的全球最佳结果。回想一下,相比之下,我们在这里研究了使用L 2正则化的SoftMax参数化。在几个月前(在写作时)在线发表的一篇最近的论文[4]中,J。Bhandari和D. Russo讨论了SoftMax参数化,但重点介绍(我们引用)“理想化的政策梯度更新,并访问了确切的梯度评估”。是一个区别,我们将在这里重点放在非脱颖而出的梯度上(这是实施的梯度),但以更强的假设为代价。然而,在另一项最先进的研究[11]中,作者做出了三项贡献。首先,他们确定,当启用真实梯度(即没有随机性)时,具有软磁性参数化的策略梯度以O(1 /T)的速率收敛。然后,他们检查了熵登记的策略梯度,并证明其加速收敛速率。最后,通过整合上述结果,它们描述了熵正规化增强策略优化的机制。最后,其他一些相关的作品包括[21],更具体地研究了使用深神经网络时的现场,而[24]通过使用新的变体进行了折现因子来研究蒙特卡洛估计的随机推出的新变体。
肠道轴的理论自数十年以来就成为研究热点,肠道微生物群在精神疾病中的作用引起了特别关注。2018年肠道心理学的主张清楚地表明了肠道,微生物群,大脑和心理健康之间的联系(Liang等,2018)。图1显示了PubMed中文章数量的显着增加。肠道微生物群和大脑发育的变化几乎同步发生。对协调的破坏可能导致各种脑部疾病,包括神经发育和神经退行性疾病(Borre等,2014; Liang等,2018)。早期发展可能会影响个人一生。在这个系列中,涉及早产是严重的问题。过早的婴儿异常暴露于意外的环境因素时,他们可能必须面对围产期白质损伤(WMI)或其他神经发育障碍的重大风险。研究表明,它们的肠道菌群和脑发育明显受损,脑损伤与像克雷伯氏菌这样的不友好细菌的过度生长相关(Seki等,2021)。Wang等。 总结了WMI下菌群甲状腺轴的作用,指出肠道菌群可以通过包括SCFAS的产生,细胞因子调节和氧化应激减轻在内的途径来使大脑充满脑部,并提出益生菌和益生菌治疗可以是改善WMI的有益途径。 肠道菌群在预防新生儿脑膜炎中也很重要。Wang等。总结了WMI下菌群甲状腺轴的作用,指出肠道菌群可以通过包括SCFAS的产生,细胞因子调节和氧化应激减轻在内的途径来使大脑充满脑部,并提出益生菌和益生菌治疗可以是改善WMI的有益途径。肠道菌群在预防新生儿脑膜炎中也很重要。肠道微生物群的不成熟和上皮屏障的允许性促进了细菌,例如B组链球菌从肠道传播到大脑,并集体解释了对细菌性脑膜炎的新生儿敏感性(Travier等,2021)。肠道教育的免疫细胞,包括IgA浆细胞,B细胞,NK细胞和T细胞等。可以迁移到脑膜上,以保护脑实质免受病原体感染。无菌啮齿动物的脑膜缺乏这些免疫细胞,正常肠道菌群可能是迁移的关键因素(Fitzpatrick等,2020; Di Marco Barros等,2022)。给药益生菌和/或益生元可以通过促进肠道粘膜防御的成熟来帮助预防新生儿细菌性脑膜炎(Fitzpatrick等,2020; Travier等,2021; Di Marco Barros et al。,2022年)。
摘要 表皮生长因子 (EGF) 可诱导非肿瘤大鼠肾成纤维细胞在细胞培养中发生转化表型,这些转化表型是从成年小鼠的许多非肿瘤组织(包括颌下腺、肾脏、肝脏、肌肉、心脏和大脑)中分离出来的。它们与之前描述的从肿瘤细胞中分离出来的转化生长因子 (TGF) 类似,具体如下:它们可通过酸/乙醇提取,并且是酸稳定的低分子量 (6000-10,000) 多肽,需要二硫键才能起作用,并且它们会导致非肿瘤指示细胞的锚定非依赖性生长,而这些细胞在没有它们的情况下不会在软琼脂中生长。从雄性小鼠的颌下腺中对这些 TGF 进行部分纯化,结果表明它们不同于 EGF。与之前描述的细胞外 TGF 不同,但与来自肿瘤细胞的某些细胞 TGF 一样,它们通过 EGF 增强其促进锚定非依赖性生长的能力。颌下腺 TGF 蛋白的等电点接近中性。在 Bio-Gel P-30 上进行色谱分析,然后进行高压液相色谱分析,总纯化率达到 22,000 倍。在 EGF 存在下进行测定时,最纯化的蛋白质在 1 ng/ml 的软琼脂中具有诱导生长的活性。这些数据进一步证明了肿瘤形成可能是由非肿瘤生化过程的定量而非定性改变引起的。我们最近描述了 (1) 从几种肿瘤小鼠组织(包括由莫洛尼肉瘤病毒 (MSV) 转化的成纤维细胞和最初由化学致癌物诱导的可移植膀胱癌)中分离和表征一组低分子量、酸稳定性多肽(称为转化生长因子 (TGF))。这些多肽是可通过酸/乙醇提取的细胞内蛋白质。类似的细胞外转化多肽,称为肉瘤生长因子 (SGF),是由 De Larco 和 Todaro (2) 从培养的 MSV 转化小鼠成纤维细胞的条件培养基中首次分离出来的。最近报道了几种其他细胞外转化多肽,它们来源于人类 (3) 和动物 (4) 来源的肿瘤细胞。所有这些多肽在应用于培养的未转化、非肿瘤指示细胞时都会引起以下一系列变化,这些变化为 TGF 提供了一个操作性定义:(i) 单层细胞密度依赖性生长抑制的丧失;(ii) 单层细胞过度生长;(iii) 细胞形状改变,导致指示细胞呈现肿瘤表型;(iv) 获得锚定独立性,从而能够在软琼脂中生长。未转化的非肿瘤细胞不会在软琼脂中形成逐渐生长的菌落,并且培养细胞的这种不依赖锚定的生长特性与体内肿瘤的生长具有特别高的相关性(5-7)。
新闻稿 立即发布 新加坡国立大学医学研究发现新疗法治疗结直肠癌的潜力 通过阻断 DUSP6,可以实现结直肠癌的新疗法,DUSP6 是一种对细胞生长、存活和修复至关重要的蛋白质。 新加坡,2025 年 1 月 15 日——结直肠癌 (CRC) 是一种始于结肠(大肠)或直肠的癌症,结肠或直肠是消化系统的一部分。它通常始于结肠或直肠内壁形成的异常生长物(称为息肉)。随着时间的推移,如果不及时治疗,其中一些息肉可能会变成癌症。CRC 是新加坡最常见的癌症之一,平均每年约有 2,540 例,也是新加坡癌症死亡的主要原因之一。根据世界卫生组织 (WHO) 的报告,它是全球第三大常见癌症,约占所有癌症病例的 10%。癌症复发和产生耐药性等问题对 CRC 治疗构成了重大挑战,凸显了对新治疗方法的需求。新加坡国立大学杨潞龄医学院的研究人员取得了一项可能改变 CRC 治疗方式的发现。他们的研究表明,一种名为双特异性磷酸酶 6 (DUSP6) 的分子在帮助 CRC 生长方面起着重要作用。本研究中测试的 DUSP6 水平较高的 CRC 细胞增殖率比 DUSP6 水平较低的 CRC 细胞高出约 40%。与 DUSP6 水平较低的患者相比,CRC 患者 DUSP6 水平升高与预后较差和生存率降低相关(p 值 = 0.029)。DUSP6 是一种称为磷酸酶的蛋白质,其作用类似于细胞内特定信号通路的“关闭”机制。它的主要功能是控制 ERK1/2 MAPK 通路,这对细胞生长、存活和修复至关重要。在正常情况下,DUSP6 会使 ERK1/2 失活,从而阻止细胞过度生长或信号传导。在某些癌症(例如肺癌和皮肤癌)中,DUSP6 充当肿瘤抑制因子,有助于阻止癌症生长。然而,在其他癌症(例如结直肠癌)中,DUSP6 具有相反的作用并促进肿瘤生长。这项研究由新加坡国立大学医学院微生物学和免疫学系和免疫学转化研究计划 (TRP) 的张永良副教授领导。张副教授说:“在结直肠癌中,肿瘤中发现了更高水平的 DUSP6,它有助于癌细胞更快地生长、更容易扩散,并导致患者预后较差。这一意想不到的作用凸显了为什么 DUSP6 现在被视为新疗法的潜在目标。我们的研究不仅解释了为什么某些结肠癌如此具有侵袭性,而且为我们开发新疗法提供了明确的目标。”
脑脊液体积在 24 个月时恢复正常(12),这与横断面研究中老年人胼胝体体积减小的报告一致(13)。脑脊液体积的变化轨迹代表了另一种发育模式,即在被诊断为 ASD 的儿童中,从 6 个月大(14、15)到 4 岁(16)期间持续增加。综上所述,这些研究表明,ASD 儿童出生后早期大脑发育会发生一系列年龄特异性变化,同时行为也会发生动态变化。这表明,婴儿早期的症状前大脑变化可能代表一系列相互关联的大脑和行为变化,这些变化会导致自闭症整个综合症的出现,并在生命的 2 和 3 年内巩固为一种临床可诊断的疾病(17)。进一步描述大脑变化的性质和顺序将为阐明这种疾病的发病机制提供重要线索,并为制定针对这些发展轨迹的针对性干预措施提供信息。尽管长期以来,结构和功能神经影像学和尸检研究表明皮层下结构,特别是杏仁核,与 ASD 有关,但尚无研究检查过 ASD 婴儿期皮层下大脑发育的性质和时间。神经影像学研究表明 2 至 4 岁的 ASD 儿童杏仁核增大(18 – 22),尸检研究表明杏仁核神经元数量过多(23)和树突棘密度增加(24)可能是导致早期杏仁核过度生长的细胞过程。然而,绝大多数神经影像学研究都是横断面研究,并且是在确诊后的儿童(即 2 岁及以上)中进行的,因此无法了解杏仁核增大的发育时间过程、其与出现诊断特征和最终诊断的时间关系,以及增大是杏仁核特有的还是也发生在婴儿期的其他皮质下结构中,例如基底神经节。此外,对患有 ASD 的婴儿进行的神经影像学研究尚未检查 ASD 与其他神经发育障碍关系中脑部发现的特异性。在这项研究中,我们检查了选定的皮质下结构(杏仁核、尾状核、壳核、苍白球、丘脑)的纵向结构 MRI,以对比四组婴儿出生后早期脑发育情况:患有脆性 X 综合征(FXS)的婴儿;患自闭症可能性较高的婴儿(因为有一个患有自闭症的哥哥姐姐),后来患上了自闭症;患自闭症可能性较高的婴儿没有患上自闭症;对照组婴儿患自闭症的可能性较低,但发育正常。研究设计通过对比特发性自闭症(一种行为定义的发育障碍)与遗传定义的障碍 FXS 的大脑和行为发育,研究了疾病特异性问题。具有重叠的认知和行为特征(25)。此外,我们注意到,这项研究将家族性自闭症(自闭症的一个亚组,其病因通常归因于常见的多基因遗传[26])与 FXS(一种遗传性发育障碍和
地球被恰当地描述为一个沿海星球( Martínez 等人,2007 )。沿海区被定义为距离海岸不到 100 公里且海拔不到 10 米的陆地,是地球表面水体与陆地之间的线性界面,长度超过 160 万公里。地球表面的这一重要特征非常长,可以绕赤道 402 圈( Martínez 等人,2007 )或延伸到月球并返回两圈。虽然沿海海洋占全球海洋表面面积的 8%( Cracknell,1999 ),但它占海洋有机物总量的 14-30%( Gattuso 等人,1998 )。沿海海洋(指海岸与大陆架边缘之间的海洋区域)和相关的沿海环境处于气候变暖的前沿。二氧化碳浓度不断上升,导致大气变暖,目前年均浓度接近 420 ppm(https://www.esrl.noaa.gov),导致海平面上升,并可能导致沿海水文、洋流和天气发生变化。冰川和冰盖融化导致海平面上升,有可能导致沿海社区被淹没(Vitousek 等人,2017 年)以及沿海侵蚀加剧(Zhang 等人,2004 年),而海水变暖预计将加剧热带气旋的严重程度(Sobel 等人,2016 年)。有记录显示,随着气候变暖趋势导致热带物种向极地迁移( Pinsky 等人,2013 ),珊瑚礁发生大规模白化( Heron 等人,2017 ),海洋生态系统生物多样性遭到破坏。除了气候因素外,不断增长的沿海人口也对他们生存和繁衍所需的海洋服务施加了压力。目前,全球 27% 的人口生活在沿海地区( Kummu 等人,2016 )。预计到本世纪中叶,这一人口将增加近一倍( Neumann 等人,2015 ),这将增加不断变化的沿海环境的压力。过去 100 年里,人类对沿海资源的依赖和开发导致沿海和内陆水生栖息地发生越来越剧烈的变化( Turpie 等人,2017 )。目前,全球人均海产品消费量占所有动物蛋白的 6%,是国际贸易量最大的食品商品(Smith 等人,2010 年)。水产养殖在消费海产品供应中所占的比例越来越大。随着人口增长和气候变化,这一趋势预计将持续下去(Wells 等人,2015 年)。此外,沿海水生栖息地的压力导致了许多对人类和水生生态系统有害的浮游植物物种的出现(Anderson 等人,2002 年)。例如,水产养殖产生的废弃营养物会助长有害藻华(HAB)的形成。有毒的赤潮和无毒或入侵性浮游植物物种的过度生长会破坏生态系统的功能,并影响食物和水资源。这些变化主要源于人为的富营养化(Glibert 等人,2005 年;Anderson,2009 年)。过量的藻类会降低光线的穿透力,对水柱和底栖生物的光合作用产生负面影响。一些藻华的生长速度可能快于自然食草动物的消耗速度。
通过石墨烯进行远程外延相互作用的实验证据 Celesta S. Chang 1,2,† 、Ki Seok Kim 1,2,† 、Bo-In Park 1,2,† 、Joonghoon Choi 3,4,† 、Hyunseok Kim 1 、Junsek Jeong 1 、Matthew Barone 5 、Nicholas Parker 5 、Sangho Lee 1 、Kuangye Lu 1 、Junmin Suh 1 、Jekyung Kim 1 、Doyoon Lee 1 、Ne Myo Han 1 、Mingi Moon 6 、Yun Seog Lee 6 、Dong-Hwan Kim 7,8 、Darrell G. Schlom 5,*、Young Joon Hong 3,4,*、和 Jeehwan Kim 1,2,6,9,* 1 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139,2 麻省理工学院电子研究实验室,美国马萨诸塞州剑桥 02139 3 世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 4 GRI-TPC 国际研究中心和世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 5 康奈尔大学材料科学与工程系,纽约州伊萨卡,14850,美国 6 首尔国立大学机械工程系,首尔,韩国 7 成均馆大学(SKKU)化学工程学院,水原 16419,韩国 8 成均馆大学(SKKU)生物医学融合研究所(BICS),水原 16419,韩国 9 麻省理工学院材料科学与工程系,马萨诸塞州剑桥 02139,美国 † 这些作者的贡献相同。 * 通讯至 jeehwan@mit.edu、yjhong@sejong.ac.kr、schlom@cornell.edu ORCID ID:Celesta S. Chang (0000-0001-7623-950X)、Ki Seok Kim (0000-0002-7958-4058)、Bo-In Park (0000-0002-9084-3516)、崔仲勋 (0000-0002-2810-2784)、郑俊石 (0000-0003-2450-0248)、金贤锡 (0000-0003-3091-8413)、李尚浩(0000-0003-4164-1827),路匡业(0000-0002-2992-5723)、Jun Min Suh(0000-0001-8506-0739)、Do Yoon Lee(0000-0003-4355- 8146)、Ne Myo Han(0000-0001-9389-7141)、Yun Seog Lee(0000-0002-2289-109X)、Dong-Hwan Kim(0000-0002-2753-0955)、Darrell Schlom(0000-0003-2493-6113)、Young Joon Hong(0000- 0002-1831-8004)、Jeehwan Kim(0000-0002-1547-0967)摘要远程外延的概念利用衬底的衰减电位二维范德华层覆盖在基底表面,这使得吸附原子能够进行远程相互作用,从而遵循基底的原子排列。然而,必须仔细定义生长模式,因为二维材料中的缺陷可以允许从基底直接外延,这可能会进一步诱导横向过度生长形成外延层。在这里,我们展示了一种只能在远程外延中观察到的独特趋势,与其他基于二维的外延方法不同。我们在图案化石墨烯上生长 BaTiO 3,以显示一个反例,其中基于针孔的外延无法形成连续的外延层。通过观察在没有单个针孔的石墨烯上生长的纳米级成核位点,我们在原子尺度上直观地证实了远程相互作用。从宏观上看,GaN微晶阵列的密度变化取决于衬底的离子性和石墨烯层数,这也证实了远程外延机制。