•桥梁妇女健康感染性疾病检测测试(桥梁诊断)CPT代码0330U注意:不允许实验室代表订购医师获得临床授权或参加授权过程。只有订购医师应参与与先前授权/医疗必要性有关的授权,上诉或其他行政程序。在任何情况下,实验室或医师/提供者均不得使用代表实验室的代表或与实验室和/或第三方有关系的任何人,以代表命令医师获得授权,以促进授权过程的任何部分或任何授权范围的授权元素,包括遵循和/或否定申请的任何元素,包括遵守和/或否定的任何元素,包括遵守和/或否定的任何元素,并允许任何拟议的授权,或者否定授权。适当性。如果发现实验室或第三方支持授权过程的任何部分,则BCBSRI将认为该行动违反了该政策,并将采取严格的行动,包括从BCBSRI提供商网络终止并终止。如果实验室提供尚未授权的实验室服务,则该服务将被拒绝作为参与实验室的财务责任,并且不得向成员账单。商业产品未涵盖一些基因测试服务,对于任何自资助的群体的合同排除在外,这些群体排除了与州授权有关的生物标志物测试的扩大覆盖范围,R.I.G.L。§27-19-81在生物标志物测试任务策略中描述。对于这些小组,在医学上不需要或不涵盖哪些基因测试服务涵盖的列表,因为它们是合同的排除,可以在基因测试服务或专有实验室分析政策的“编码”部分中找到。请参阅适当的福利手册,以确定成员计划是否已定制福利范围。请参阅相关策略列表以获取更多信息。覆盖范围的福利可能会有所不同。请参阅适当的福利手册,覆盖范围或订户协议的适用实验室福利/承保范围。背景细菌性阴道病(BV)BV是由正常细菌阴道菌群失衡引起的。这很常见,尤其是在生殖年龄的个体中。虽然没有单一的已知病因剂,但阴道菌群发生了变化,涉及耗尽过氧化氢的乳酸杆菌,其阴道pH值和其他细菌的过度生长升高,包括阴道,花生虫,植物菌,ttrepstopostreptepteptepteptepteptoccus,mobiluncty anna anaa,以及其他细菌。阴道培养不是鉴定BV的适当诊断方法,因为BV不是由特定细菌物种的存在引起的。各种商业测试提供了快速准确的pH评估和胺检测。例如,可以在商业上获得测量由阴道样品产生的挥发性气体和比色测试的自动设备。几项研究评估了DNA片段的核酸探针可检测和量化阴道流体样品中的特异性细菌。聚合酶链反应(PCR)方法提取并使用通用引物或特定引物扩增DNA片段。结果可能是定性的(评估是否存在特定的微生物)或定量(评估存在多少微生物)。该技术可用于测量多种生物(例如,已知与BV相关的生物)同时可作为Multitarget PCR测试可用。在接受多坐Multitarget PCR测试的BV症状或症状的个体中,证据包括一些有关技术性能和诊断准确性的前瞻性研究。相关结果是测试有效性,症状和疾病状况的变化。
腹泻是一个普遍的全球健康问题。2016年,腹泻的全球发病率超过44亿案,导致死亡人数超过160万,死亡率中排名第八。腹泻为患者造成巨大的医疗和医疗费用,并对社会产生巨大影响(Wang等,2021)。腹泻的诊断主要基于异常的粪便形态,而频繁的粪便形态的频繁排便称为伪diarrhea(Schiller等,2017)。严重的急性腹泻或慢性腹泻可以通过脱水,营养不良,免疫系统和社会经济负担对人类健康产生重大影响。越来越多的证据表明,肠道微生物群的失衡是一个重要因素,导致对各种病原体的敏感性增加以及随后的腹泻发作。肠道菌群与腹泻之间的关系很复杂,涉及多种调节机制。入侵病原体抑制了有益的肠道细菌的生长和破裂,导致失衡,使宿主更容易受到各种疾病和状况的影响,包括腹泻。另外,某些病原体会产生破坏正常肠功能的毒素,从而触发可导致腹泻的免疫反应(Li Y. X.等,2021)。几个因素导致肠道菌群失衡,其中一个因素是饮食习惯。高脂和高蛋白饮食已被观察到影响肠道微生物的组成。高脂和高蛋白饮食已被观察到影响肠道微生物的组成。这些饮食降低了有益的乳酸细菌的丰度,对于维持肠道健康至关重要。高脂饮食增加了小鼠肠含量中操作分类单元的数量,多样性和丰富性,从而导致肠道菌群中的结构和组成修饰。疲劳与高脂饮食结合使用,会扰乱微生物群,从而导致有害细菌的增加和有益细菌的减少。这种中断导致炎症因子升高,免疫因子降低以及最终发作腹泻。特别是某些细菌的存在,例如小杆菌,gemella和甲基杆菌,而有益细菌(如Pediococcus)会增加。gemella被发现与总胆固醇显着相关,突出了肠道微生物不平衡,失调的脂质代谢失调和高脂饮食在疲劳条件下引起的腹泻之间的联系(Li等,2022c; Zhou等,20222222223232323233232323232323232323232322222222222222222222. )。肠道微生态的微环境的变化也会导致肠道菌群营养不良。高温和湿度对肠道菌群的影响有害,尤其是导致乳杆菌种群降低,这可能是炎热且潮湿的腹泻的重要原因(Qiao等,2023b)。有益细菌通过调节肠道菌群的组成,抑制有害细菌的过度生长并减少氧化应激,从而在肠内起着至关重要的保护作用。他们通过各种机制,例如金属离子螯合能力,抗氧化剂系统,信号通路的调节,ROS酶产生和肠道菌群的调节。乳酸杆菌和双杆菌是生产乳酸,乙酸和丙酸的益生菌,有助于维持平衡的肠道微生物群和
抗菌剂,也称为化学疗法,旨在通过抑制或杀死感染微生物,同时最大程度地减少对宿主的伤害来对抗感染。抗生素是一种由微生物产生的一种抗生素,可有选择地抑制或杀死低浓度的其他微生物的生长或杀死其他微生物。该定义不包括较高生物体产生的物质。可以根据其化学结构,作用机理,靶向生物类型,活性谱和来源分类。某些抗菌作用直接在细菌细胞壁上发挥作用,或者必须通过它,然后才能在细胞内水平破坏细菌代谢。类红霉素这样的抗生素可以靶向革兰氏阳性细菌,但对革兰氏阴性菌的含量无效,除非在极少数情况下。大多数细菌基于实验室中使用的染色技术属于这两类。革兰氏阴性物种,即使用最少的营养迅速繁殖,并且在医院和革兰氏阳性对应物的同时也发现。革兰氏阳性生物的例子包括金黄色葡萄球菌,化脓性链球菌和肺炎链球菌,而革兰氏阴性菌的葡萄球菌包括大肠杆菌,Neisseria Gonorrhea和Klebsiella。厌氧菌可在没有游离氧气的情况下生存,但需要特殊的条件才能在实验室中生长。但是,在某些情况下,它们会引起严重的感染。使用抗菌药物的问题之一是毒性,在注射部位或影响各种器官的全身毒性上可能表现为局部刺激。一些常见的分类包括: *磺酰胺和相关药物 *奎诺酮,如环丙沙星 *β-乳糖抗生素,例如青霉素和头孢菌素 * tetracyclines * tetracyclines,包括强力霉素 *氨基糖苷,包括氨基糖苷,包括链霉菌素和雌雄同体,包括Er雌激素 * Macrolosiv,酸毛霉素,酸糖尿病,酸糖苷,酸糖苷,酸糖尿病红唑和氯咪唑抗生素也可以根据其作用机制进行分类: *抑制细胞壁合成,例如青霉素和头孢菌素 *抑制蛋白质合成,包括四环素和红霉素在内*也可以根据它们主要针对的生物类型来分类: *抗菌剂,包括青霉素和氨基糖苷 *抗真菌药物,例如抗菌剂 *抗真菌药物,例如ZIDOVUDINE和ACYCLOVIR抗菌抗菌剂,也可以根据其靶向: *抗菌剂进行分类。抗吡喹剂,例如氯喹和甲硝唑 *抗智能剂,例如甲苯二唑和丙ama剂,也可以根据其活性谱进行分类: *狭窄的 - 谱抗微生物剂,例如青霉素g和erythromycin and themimictram and themicramic and themicriame and themicriame andimicrials,themicriame themiccl themiccl tatect themiccl themicrials themiCrimicClateCcltic themiCrimicClateCclticramic tatect the最后,抗菌物质通过迅速杀死细菌或阻止其复制来起作用。氯霉素会导致骨髓抑郁症,而四环素可能会损害肝脏和肾脏。抗菌剂还会引发无法预测且不与剂量有关的超敏反应。这些反应从轻度皮疹到严重的过敏性休克。它们可能是由青霉素,头孢菌素,磺酰胺或氟喹诺酮引起的。另一个主要问题是耐药性,随着时间的流逝,微生物对抗菌药物产生无反应性。这可能是由于某些微生物中的自然耐药性或由于这些药物长时间使用而获得的耐药性。超级感染是指抗菌治疗后新感染的发展。是因为人体的正常微生物菌群发生了改变,导致失衡会导致致病生物更容易确定自己。的例子包括念珠菌过度生长,这通常与四环素和氯霉素等广谱抗生素有关。为了最大程度地减少超级感染,尽可能使用特定的抗菌药物至关重要,避免使用这些药物治疗微不足道的感染,而不是不必要地延长抗菌治疗。使用抗菌剂会导致各种问题,例如肠道菌群被破坏时的维生素缺乏。这种破坏可能是由于某些改变肠道平衡的药物的使用可能会导致这种中断。此外,抗菌药物可以掩盖感染,暂时抑制症状,但可能导致后来更严重的结果。例如,将单剂量的青霉素用于淋病,可能会掩盖梅毒或TB,这是由于短期链霉素引起的。磺酰胺是一类较旧的抗菌剂,由于细菌耐药性和不良副作用的发展而被大大替换。这些化合物主要用作抑制抑制剂,抑制各种细菌的生长,包括革兰氏阳性和革兰氏阴性生物。其作用背后的机制涉及细菌干扰叶酸的合成,而人类可以从饮食中利用预先形成的叶酸。磺酰胺以不同的形式可用,每种都具有其独特的特征。可以根据其作用方式将它们广泛分为三个主要组:(1)抑制细胞壁合成,包括甲基核苷和奥沙西林等青霉素; (2)抑制蛋白质合成; (3)抑制细菌核酸合成。
NLM 提供对科学文献的访问,但并不意味着 NLM 或美国国立卫生研究院认可其内容。详细了解 PMC 免责声明和版权声明。2021 年 2 月 1 日发表在 PMC 上的一项研究发现,自闭症谱系障碍 (ASD) 出现在幼儿时期,当时婴儿从正常的行为特征过渡到幼儿期表现出 ASD 特征。前瞻性脑成像研究通过揭示 ASD 的神经生物学和发育过程,显示出在症状前检测和为早期干预提供信息方面的巨大希望。本文回顾了从出生到幼儿期 ASD 大脑发育的神经影像学研究,将这些发现与候选神经生物学机制联系起来,并讨论了对未来研究和临床实践的影响。在美国,ASD 的患病率为 1/59,其特点是症状特征各异,社交沟通障碍和限制性重复行为的严重程度各不相同。尽管人们对了解自闭症的神经生物学非常感兴趣,但大多数研究都是横断面研究和诊断后研究,涉及的年龄范围很广。最近的前瞻性研究跟踪了高风险兄弟姐妹从婴儿期到幼儿期的情况,发现自闭症的诊断症状在生命的第一年和第二年的后半段出现。运动技能、对面部和社交场景的关注、对名字的反应、视觉接收和语言技能的差异在生命第二年的早期也很明显。这些行为发生在出生后大脑发育的高度动态时期,其特点是大脑结构和功能发生重大变化。自闭症谱系障碍 (ASD) 患者的大脑发育已得到广泛研究,研究使用了 MRI 等神经成像技术。研究表明,非典型大脑表型在婴儿期出现,通常在两岁左右症状巩固之前。研究表明,后来患上自闭症的婴儿在 12 至 24 个月之间表现出更快的总脑容量增长速度,与非自闭症同龄人相比,这些个体的脑容量有所增加。最近的研究还将生命第二年期间大脑总体积的变化率与 ASD 相关的社交缺陷的严重程度联系起来。此外,研究表明,大脑过度生长不是出生时存在的,而是在生命第一年的后期出现的。这些发现对临床实践具有重要意义,并强调需要进一步研究以确定个人特定的发育问题领域,利用神经学特征分析病因异质性,将遗传变异纳入神经影像学研究,绘制大脑发育和行为表型的共现图,并将体内 MRI 与基础科学相结合,揭示 ASD 病理生理学的机制见解。研究发现,6 至 12 个月大的婴儿的大脑发育显著增长,后来患上了自闭症谱系障碍 (ASD),并在生命第二年出现大脑过度生长。这一发现支持了皮质过度扩张导致 ASD 大脑过度生长的假设。此外,使用机器学习方法通过 6 个月和 12 个月的 MRI 测量值进行诊断分类。研究还发现皮质表面积和厚度的差异检查,ASD 婴儿和幼儿与对照组之间没有发现差异。一项研究在某些情况下观察到局部皮质区域的厚度增加,这可能是由于年龄范围或使用的图像分析管道造成的。在青少年和成年人中,观察到皮质厚度差异,但影响的方向不同。混合纵向设计发现,对于患有 ASD 的个体,儿童时期的皮质厚度较大,随后在中期轨迹交叉,成年早期局部皮质厚度减少。研究表明,皮质厚度的异常模式在 3 岁后出现,此后遵循动态发展模式。还检查了皮质脑回模式,一项研究发现 3 岁时患有自闭症的男孩的梭状回脑回减少,并且脑回纵向增加。在患有自闭症谱系障碍 (ASD) 的个体中,在学龄前,颞叶、额叶和顶叶等区域的脑回增加,而正常发育的对照组局部脑回保持稳定或减少。这与之前关于患有自闭症的大龄儿童和成人大脑发育增加的发现一致。需要进一步研究来揭示患有自闭症的幼儿和婴儿大脑结构的发育模式。杏仁核是大脑的核心社交区域,引起了人们对自闭症病理生理学的极大兴趣,但很少有研究探索其在儿童早期的发展。研究表明,学龄前杏仁核增大与较差的社交和沟通结果相关,在患有 ASD 的女孩身上观察到了显著的影响。纵向调查揭示了患有 ASD 的幼儿的杏仁核大小、行为和遗传风险因素之间的复杂关系。作者比较了正常发育儿童和发育迟缓儿童的小脑体积,但没有发现行为和小脑体积之间的关联。然而,一项针对患有 ASD 的幼儿的研究报告称,小脑内的白质体积较大,灰质增加,尤其是在女性中。其他研究表明,病例组和对照组的小脑体积没有差异,而一些研究表明,与正常发育个体相比,自闭症儿童和成人的胼胝体可能较小。一项对具有自闭症家族风险的婴儿的纵向研究发现,他们的胼胝体面积在出生后第一年增加,但到 2 岁时就恢复正常。此外,在这些婴儿中还观察到轴外液量的增加,这种增加在患上自闭症之前一直持续到 24 个月。研究发现,6 个月时的轴外液量与自闭症谱系障碍 (ASD) 严重程度有关。在更大的婴儿群体中,与对照组相比,患有自闭症的婴儿轴外液量增加了 18%。该研究还报告称,自闭症症状最严重的儿童轴外液量增加了 25%。Shen 和同事发现,无论孩子是否有家族风险,轴外液的增加都会持续到 3 岁。他们还将体液增加与自闭症儿童的睡眠问题和非语言能力下降联系起来。使用扩散 MRI 的研究调查了 ASD 中的白质连接性和完整性。虽然很少有研究关注学龄前时期,但早期研究结果表明大脑某些区域的分数各向异性 (FA) 较高,表明白质特性更成熟。尽管在很宽的年龄范围内都出现了下降,但研究发现患有自闭症谱系障碍 (ASD) 的幼儿和儿童的分数各向异性 (FA) 较低。两项纵向研究揭示了 ASD 中白质发育的动态发展性质。一项研究跟踪了 6 至 24 个月大有患 ASD 风险的婴儿,发现那些后来患上 ASD 的婴儿最初表现出 FA 增加,随后成熟速度变慢。另一项研究报告了与年龄相关的 FA 异常变化,FA 在较小年龄时较大,后来变化速度变慢。这些发现表明 ASD 的特点是生命第一年 FA 增加,随后成熟速度变慢,最终可能导致年龄较大的儿童和成年人的 FA 值降低。最近的研究还探索了白质发育作为网络或连接组的情况。一项研究发现,与对照组相比,患有 ASD 的幼儿局部和整体效率降低,尤其是在感觉处理区域。另一项研究表明,在后来患上 ASD 的婴儿中,早在 6 个月大时,白质网络效率就存在缺陷。此外,研究将白质发育与幼儿的 ASD 相关行为联系起来,包括限制性和重复性行为以及对感觉刺激的反应。语言分数的个体差异与白质发育的差异有关。对有自闭症谱系障碍 (ASD) 家族风险的婴儿的研究发现,大脑结构的改变可能导致 ASD 的行为紊乱。功能性磁共振成像研究揭示了神经活动对听觉刺激的反应存在差异,包括大脑半球之间的同步性降低和语言网络的异常侧化。与对照组相比,患有自闭症的幼儿表现出较弱的半球间同步性,双侧颞叶和额叶区域的激活度降低。该研究还发现大脑与行为之间的关系呈负相关,表明自闭症患者的语言区域功能特化异常。研究表明,婴儿在患上自闭症谱系障碍 (ASD) 后,某些区域(如扣带回和岛叶)的大脑活动可能会发生变化。然而,还需要更多的研究来证实这些模式是否是自闭症所特有的。研究还发现,患有自闭症的小男孩的杏仁核与其他参与社交沟通和重复行为的大脑区域之间的联系减弱。一项针对有患自闭症风险的婴儿的研究发现,不同大脑网络的功能连接与后来的限制性和重复性行为的发展之间存在关联。然而,随着孩子长大,这种关联的方向发生了变化。研究还表明,静息状态连接可用于预测 6 个月大婴儿的诊断结果。早在 6 个月大时,患上 ASD 的婴儿就表现出异常的白质发育和脑脊液量增加,这与运动延迟和非典型视觉定向相吻合。大脑变化先于定义 ASD 特征的出现,并与生命第一年的行为变化有关。这些发现表明,大脑表型保持稳定,而 ASD 症状在生命第二年巩固。跨多个范式的研究(包括每个表型的纵向研究)支持此处提出的发现(图)。双条表示轨迹的未知或记录不全的起点和/或终点。顶部面板中的虚线表示典型的大脑发育,上下偏差表示相对于对照组的大脑表型增加或减少。例如,与对照组相比,ASD 中的分数各向异性在 6 个月时增加,在 12 个月时保持不变,从 24 个月到 36 个月时降低。重复行为和社交缺陷持续超过 36 个月,没有被引用,因为这些是自闭症患者的诊断特征。第一年的表面积过度扩张先于第二年的大脑过度生长34。同时,对名字的反应改变从 9 个月开始,并持续到 24 个月21,与对照组相比,注意力轨迹不同19,自闭症症状的出现9,11–14。这些发现有助于形成一条发展时间表,其中与自闭症和风险相关的大脑和行为表型在前驱期出现,大致在两岁生日之前,此后诊断症状得到巩固。在灰质发育和皮质表面积扩大的推动下,头两年大脑快速生长27。然而,在 ASD 中,这种出生后的轨迹被打乱了。行为和神经影像学研究表明,皮质表面积的过度扩张与 6 至 12 个月前观察到的运动、感觉和视觉缺陷的前驱期同时发生,随后在第二年出现大脑过度生长和自闭症社交缺陷2。这凸显了控制表面积扩张的机制在 ASD 病理生理学中的核心作用。扩张被认为是由神经祖细胞增殖、分化和迁移113–116 控制的,oRG 细胞群扩张与大脑大小直接相关113。神经祖细胞增殖和神经发生在 ASD 发展中的潜在作用得到了临床前、遗传、尸检数据118 和最近研究的支持,这些研究表明来自 ASD 患者的细胞存在过度增殖。此处给出文章文本 大脑生长加快,特别是某些区域(例如视觉皮层)的大脑生长加快,可能是自闭症综合征的标志,包括 16p11 缺失、PTEN 和 Chd8 突变。研究表明,神经元增殖增加会导致神经连接发生变化,进而影响电路功能和行为。对小鼠的研究还发现,上层锥体神经元的过度繁殖会破坏正常的大脑发育,导致突触连接改变和类似自闭症的行为。此外,研究报告称,患有大头畸形的 ASD 患者的突触形成和神经元兴奋性发生了改变,抑制性神经元和突触也增加了。这些发现表明,大脑生长异常和神经回路中断可能是某些自闭症谱系障碍 (ASD) 亚型的潜在因素。此外,在 ASD 小鼠模型中观察到了经验依赖性可塑性和突触修剪机制的中断,这凸显了平衡兴奋性和抑制性突触在调节神经元之间竞争方面的重要性。研究还表明,6 至 12 个月的皮质过度扩张可能导致视觉定向行为缺陷,最终导致电路修剪效率低下和 ASD 特征的出现。此处给出文章文本自闭症谱系障碍 (ASD) 中存在轴外液体量表明存在超出当前理解的其他致病机制。最近的研究强调了脑脊液 (CSF) 在大脑发育和功能中的作用,研究结果表明脑脊液循环中断和代谢物积累会影响大脑功能。在表面积过度扩张之前增加的脑脊液量表明脑脊液在 ASD 的病理生理学中起调节作用。胼胝体形态和白质微结构的改变暗示着髓鞘形成、轴突口径和连接性控制过程。髓鞘形成基因富集的小鼠模型已发现少突胶质细胞功能发生显著改变,导致髓鞘厚度减少和连接效率低下。这些发现支持了这样一种观点,即 ASD 源于多种产前和产后致病机制,包括神经增殖、迁移、突触发生、修剪、髓鞘形成以及轴突发育和连接。尽早发现婴儿期的 ASD 对开发更有效的治疗方法至关重要。这一过程的复杂性反映在 ASD 患者身上观察到的多种症状和临床结果上。最近的研究使用机器学习技术分析婴儿 MRI 扫描,并以高精度预测 24 个月时的 ASD 诊断。特别是两项研究表明,生命第一年收集的 MRI 扫描可用于准确识别将继续发展为 ASD 的婴儿。一项研究开发了一种深度学习算法,该算法正确预测了 106 名高危婴儿的诊断结果,灵敏度为 88%,特异性为 95%,阳性预测值为 81%。这种方法优于生命头两年的行为测量,并有可能在大脑发育的关键时期实现早期干预。另一项研究使用支持向量回归机在 59 名高危婴儿样本中预测 ASD 诊断,灵敏度为 82%,特异性为 100%,阳性预测值为 100%。这些发现为使用 MRI 和机器学习技术进行更大规模的症状前诊断分类研究铺平了道路。在儿科神经影像学中使用数据驱动方法有望绕过事先进行特征选择的需要,从而实现更准确和更通用的模型。研究表明,深度学习 (DL) 方法可以实现更高的抽象和复杂程度,从而检测数据中的细微模式。然而,在经验丰富的专业人员(如人工智能科学家、统计学家或工程师)的监督下使用这些方法至关重要,他们经常将机器学习算法应用于高维数据集。对疾病的临床了解对于解释这些模型产生的复杂结果也至关重要。进行基于神经影像的预测研究的最佳实践包括确保足够的样本量和普遍性、解释和方法透明度。未来使用大型、公开可用的数据集的工作将有助于解决与样本量和类别不平衡相关的问题。解决这些问题需要开发新方法,例如合成过采样策略。了解从 MR 图像中得出的哪些特征有助于分类也至关重要。虽然目前的方法可以解释深度学习模型,但需要进一步研究来应对这一挑战。最终,在出版物中报告和共享机器学习算法的透明度对于共享知识和为该领域的最佳实践制定标准是必要的。该研究采用了机器学习算法,报告样本量、交叉验证、训练、测试程序、解决类别不平衡、调整参数和优化步骤。应包括解释结果的详细信息,包括识别算法学习的信息和临床相关的性能指标(特异性、敏感性、阳性预测值)。必须提供用于验证和复制的用于构建算法和进行分析的代码。大规模的症状前个性化预测对于塑造临床实践具有重大意义,必须仔细考虑伦理影响。神经科学中从群体层面的相关性到个体层面的预测的转变对于改善生活至关重要,首先是通过将模型应用于新的独立数据集来复制开创性的研究。心理放射学的发展已显示出希望,旨在实现精神疾病的个性化预测。将经过验证的算法整合到临床实践中符合精准医疗框架,为个体分配个性化治疗计划。早期诊断和干预至关重要;虽然存在针对 ASD 的循证行为干预,但预防性干预仍未经证实。神经影像学可以用作基于生物学的筛查工具,指导未来的研究。考虑到 ASD 和神经发育障碍的表型变异性,下一步的主要工作是开发方法来预测个性化关注领域。超过四分之一的有家族性 ASD 风险的婴儿在头几年会出现亚阈值异常行为,使他们成为有针对性干预的候选人。机器学习方法已经证明了使用新生儿扩散 MRI 对幼儿期认知结果的个性化预测。未来的工作应该将类似的方法应用于有 ASD 风险的婴儿。解析神经发育特征中的异质性是一种有前途的方法,可以了解 ASD 等复杂神经精神疾病的症状多样性。 NIMH 的 RDoC 项目专注于根据神经特征识别亚组,以揭示病因和治疗方面的见解。实施聚类算法可以帮助识别疾病的不同轨迹,可能反映不同的病因。虽然遗传研究已经确定了一些 ASD 病例中的新生突变,但常见的多基因变异被认为是大多数病例的原因。可遗传背景遗传变异、多基因风险之间的关系婴儿期和幼儿期大脑发育的特定个体差异以及原因仍然未知。最近对综合征型 ASD 的研究显示了背景遗传变异对幼儿行为发育的预测能力。未来的研究应将其扩展到特发性 ASD,使用神经影像学揭示早期行为表现的见解。患有 ASD 的婴儿表现出各种大脑表型,包括过度生长、液体量增加和白质发育异常,但没有一种足以预测诊断或确定因果机制。为了更好地理解这些表型及其与行为的关系,绘制从婴儿期到诊断期间大脑和行为表型的共同发展过程应该是一个主要的科学目标。先前的研究主要集中于对大脑发育的早期阶段进行建模,但需要更多地关注可能对自闭症谱系障碍 (ASD)185 至关重要的后期阶段。未来的研究应扩展到患有 ASD 和表现出大脑过度生长表型 119–121 的个体之外,以更深入地了解该疾病的根本原因。脑成像数据可以区分有患 ASD 风险的婴儿和正常发育的儿童,甚至在出现任何明显的行为问题之前。许多研究得出了几个关键发现,包括患有 ASD 的个体的脑容量增加、轴外液体量、白质发育改变和连接模式异常。这表明各种神经生物学因素都会影响儿童早期的大脑和行为发育。最近的进展促成了个性化预测模型的开发,用于识别患 ASD 风险较高的婴儿,强调需要有效的症状前干预措施。未来的研究应集中于研究病因异质性,并通过结合神经影像学、行为和基础科学研究的多学科方法将大脑和行为发育与潜在的遗传机制联系起来。该领域在描述婴儿期和幼儿期与自闭症相关的大脑表型方面取得了重大进展,包括大脑过度生长、脑脊液量增加、白质发育改变以及结构和功能连接模式异常。使用神经影像数据预测诊断和维度结果对推进临床实践大有裨益。未来的工作应侧重于解析自闭症的异质性、将遗传变异与脑影像数据联系起来、绘制发育大脑和行为表型的共现图表以及将神经影像研究与基础科学研究相结合。近年来,自闭症早期大脑和行为发育的研究取得了重大进展。研究揭示了从出生到学龄前自闭症症状的出现,神经成像技术揭示了大脑发育的不同模式。这些发现表明自闭症可能与早期大脑结构和功能异常有关。2017 年发表的一项研究提出了一个概念框架,用于理解自闭症早期大脑和行为发育。另一项研究发现,年仅 12 个月大的婴儿表现出重复性行为,这些行为后来成为自闭症谱系障碍 (ASD) 的特征。自闭症遗传学研究也取得了进展,一些研究表明兄弟姐妹中自闭症复发风险更高。此外,纵向研究追踪了自闭症症状随时间的发展,揭示了可以为早期干预和诊断提供信息的模式和轨迹。总体而言,这些研究有助于我们了解自闭症的复杂性和多面性,强调需要进一步研究其病因、病程和治疗。研究调查了有自闭症谱系障碍 (ASD) 风险的婴儿的早期运动能力和行为。这些研究旨在确定婴儿时期自闭症的潜在标志或指标,希望它们可以用作预测指标或后期诊断的预测指标。2019 年发表的一项研究发现,患自闭症风险较高的婴儿与风险较低的婴儿相比,表现出不同的运动能力。2012 年发表的另一项研究发现,婴儿的头部滞后与患自闭症的风险增加之间存在相关性。研究人员还探讨了注意力、社交参与和视觉处理在有自闭症风险的婴儿中的作用。例如,一项研究发现,后来被诊断为自闭症的婴儿早在 6 个月大时就表现出对社交场景的自发注意力下降。另一项研究发现,这些婴儿在受到干扰时不太可能与自己的面部互动。此外,研究还检查了有自闭症风险的婴儿对言语提示和听觉刺激的反应。2017 年发表的一项研究发现,这些婴儿对名字识别的反应与没有自闭症的婴儿不同。最近的研究集中于婴儿期的大脑发育,包括白质微结构、皮层下脑功能和皮层厚度。这些研究旨在确定 ASD 的潜在生物标记或了解潜在的神经机制。总体而言,这些研究表明,早期运动能力、注意力、社交参与和视觉处理可能是婴儿期 ASD 风险的重要指标。需要进一步研究才能充分了解这些因素与 ASD 发展之间的关系。研究表明,婴儿的白质微结构发育与认知能力密切相关。研究使用基于束的分析和功能连接映射等技术,研究了从出生到 2 岁期间大脑结构和功能的变化。一项研究发现,0-24 个月大婴儿的白质结构变化与 24 个月大婴儿的认知能力提高有关(Gao 等人,2015 年)。另一项研究发现,在 6 至 18 个月大婴儿出现自闭症样症状时,婴儿在 12 个月大时某些大脑区域的白质完整性会降低,这预示着 24 个月大婴儿的诊断结果会更准确(Emerson 等人,2017 年)。其他研究人员使用 MRI 扫描检查了患有自闭症谱系障碍 (ASD) 的婴儿的大脑,发现婴儿的大脑结构存在显著差异,包括某些区域的大脑尺寸增大(Piven 等人,1992 年;Courchesne 等人,2001 年)。一项较新的研究使用大量高风险婴儿,确定了自闭症的早期生物标志物,例如大脑区域间功能连接减少(Hazlett 等人,2017 年)。这些发现表明,早期生活经历和遗传倾向可以影响自闭症儿童的大脑发育。需要进一步研究以了解推动这些变化的潜在机制并制定有效的干预措施。注意:我将参考文献压缩为较短的格式,同时保留基本信息。如果您希望我扩展任何特定参考文献或提供更多详细信息,请告诉我!一系列研究调查了自闭症谱系障碍 (ASD) 患者从出生到 2 岁及以后的大脑发育和结构。该研究使用磁共振成像 (MRI) 和头围测量来检查自闭症儿童的大脑大小和形状。研究发现,在幼儿时期,大脑增大与自闭症男孩的退化有关。此外,后来患上自闭症的个体的皮质表面积在 2 岁之前增加。纵向 MRI 研究表明,自闭症患者的皮质发育持续到儿童早期。其他研究表明,2-3 岁的幼儿就存在脑成像异常,这表明自闭症可能是一种早期神经发育障碍。一些研究发现,一部分患有自闭症的男孩的表面积增加,但皮质厚度没有增加,而其他研究则使用基于表面的形态测量法来绘制患有自闭症的学龄前儿童的皮质解剖图。总体而言,研究表明,自闭症患者的大脑结构和发育从儿童早期开始就会发生改变。自闭症谱系障碍 (ASD) 的研究表明,大脑结构的变化,特别是皮质厚度的变化,可能与自闭症有关。研究发现,与没有自闭症的人相比,自闭症患者的皮质厚度往往会发生变化。然而,这些变化的程度和性质在不同的发育阶段会有所不同。一些研究表明,患有自闭症的儿童表现出额叶皮质褶皱增加,而年龄较大的青少年和成年人则表现出额叶皮质褶皱减少。此外,研究发现,患有自闭症的个体经常表现出脑沟大小和形状异常,这可能与社交沟通障碍有关。杏仁核是参与情绪处理的区域,也与自闭症有关。研究表明,患有自闭症的个体往往比没有自闭症的个体拥有更大的杏仁核,尤其是在幼儿和幼儿中。然而,杏仁核大小和自闭症行为症状之间的关系很复杂,受各种因素的影响。纵向研究为自闭症大脑变化的发展和进展提供了宝贵的见解。例如,一项研究发现,自闭症儿童的杏仁核体积随着年龄的增长而增加,而另一项研究发现,联合注意力技能与杏仁核体积的变化有关。脆性 X 综合征的研究强调了自闭症的异质性,脆性 X 综合征与自闭症有一些相似之处,但也表现出明显的大脑差异。总体而言,研究结果表明,大脑结构和功能在理解自闭症方面发挥着重要作用,需要进一步研究来阐明大脑变化与自闭症行为症状之间的复杂关系。一些发表在知名期刊上的重要研究包括:* Wolff 等人(2014 年)- 神经发育障碍:通过发展研究加速自闭症的进展。* Libero 等人(2018 年)- 自闭症谱系障碍年轻男孩局部脑回指数的纵向研究。* Williams 等人(2012 年)- 自闭症和阅读障碍皮质复杂性的球谐分析。* Kohli 等人(2019 年)- 自闭症谱系障碍儿童的局部皮质脑回增加,但青少年的局部皮质脑回迅速减少。这些研究表明,人们正在努力了解自闭症的神经基础,并开发有效的干预措施来支持患有这种疾病的人。研究调查了与自闭症谱系障碍 (ASD) 相关的大脑结构和发育变化。研究发现,患有自闭症的儿童,尤其是 2-5 岁的儿童,尾状核发育异常,而尾状核与重复行为有关。此外,由于家庭因素而患自闭症风险较高的婴儿被发现存在大脑解剖结构差异,包括皮层下和小脑区域,这预示着以后重复行为的出现。纵向研究还表明,患有自闭症的幼儿随着时间的推移,胼胝体形态会发生变化。这些变化可能与自闭症相关症状的发展有关,例如社交互动受损和沟通困难。此外,研究强调了小脑在自闭症中的潜在作用,几项研究表明自闭症患者的小脑体积和结构发生了改变。小脑参与运动控制、学习和情绪调节,可能导致自闭症中观察到的认知和行为症状。总体而言,这些发现表明,大脑发育和解剖结构的早期变化可能与自闭症症状的出现有关,特别是那些与重复行为和社交沟通困难相关的症状。本文讨论了一系列关于自闭症谱系障碍 (ASD) 儿童大脑发育的研究。该研究重点关注了自闭症儿童与非自闭症儿童相比,大脑中白质纤维和连接的发育情况。一项研究发现,自闭症儿童在幼儿期白质成熟速度加快。另一项研究发现自闭症儿童的白质完整性存在异常。第三项研究表明,后来被诊断患有自闭症的幼儿颞胼胝体纤维表现出多种结构异常。其他研究使用弥散张量成像 (DTI) 来研究自闭症儿童白质纤维和连接的发育情况。一项研究发现,6-24 个月之间,自闭症婴儿与非自闭症婴儿的白质纤维束发育存在差异。另一项研究发现,自闭症幼儿的白质连接异常,包括额叶可能存在轴突过度连接。总体而言,这些研究表明,自闭症儿童的白质纤维和连接发育可能存在异常,这可能与该疾病特有的社交和认知缺陷有关。研究发现,自闭症谱系障碍 (ASD) 患者的网络效率低下早在 24 个月大时就存在,这种现象可能会持续存在并随着时间的推移发展成更严重的症状。研究表明,有患自闭症风险的婴儿在 6-7 个月大时就会表现出异常的神经回路和白质微结构,尤其是在负责语言处理和社交互动的区域。此外,研究还发现,自闭症患者的大脑中与语言处理相关的脑区侧化往往会发生改变,这会影响他们处理和理解语言的能力。这种语言障碍被认为是自闭症早期出现的根本特征。此外,研究表明,自闭症幼儿的神经同步模式被破坏,这可能导致自闭症特有的社交和沟通障碍的发展。研究还探讨了自闭症幼儿的大脑功能与社交行为之间的关系。研究发现,与社交和感觉运动缺陷相关的神经回路功能连接异常可以预测自闭症的后期症状。最后,研究检查了患有自闭症的学龄前男孩语言变异的神经相关性,发现非典型语言处理模式与患自闭症的风险更高有关。总体而言,这些研究表明,大脑结构和功能的早期异常可能导致自闭症症状的发展,并强调早期诊断和干预的必要性。研究表明,患有自闭症谱系障碍 (ASD) 的儿童表现出大脑连接和发育中断,特别是在杏仁核和胼胝体等区域。研究还发现白质纤维束发育存在差异,这可能导致自闭症的发展。有患自闭症风险的婴儿的大脑功能和结构发生了改变,包括白质和胼胝体的变化。这些发现表明,早期干预可能有助于预防或减轻自闭症的影响。此外,研究表明,更广泛的自闭症表型早在婴儿期就可能出现,这表明自闭症是一种复杂的特征,不能仅仅归因于遗传因素。此外,对人类大脑发育的研究揭示了神经干细胞和祖细胞在大脑皮层形成中的作用。研究还表明,进化过程中的大脑皮层扩张可能与自闭症的病因有关。总的来说,这些发现强调了早期发现和干预自闭症风险患者的重要性,以及进一步研究这种复杂疾病的潜在机制和原因的必要性。注意:我在改写过程中进行了一些创造性的改动,使其更易读、更简洁,同时保持了原文的整体含义和本质。对特发性自闭症患者神经细胞的研究表明,其增殖和网络发生了改变(Marchetto 等人,2017 年)。此外,研究发现,自闭症谱系障碍中存在 FOXG1 依赖的 GABA/谷氨酸神经元分化失调(Mariani 等人,2015 年)。此外,病理性启动与自闭症受试者衍生神经元的发育基因网络异时性有关(Schafer 等人,2019 年)。遗传学研究已确定了与自闭症有关的几个关键基因,包括 PTEN,它调节小鼠的神经元树突和社交互动(Kwon 等人,2006 年)。破坏性 CHD8 突变也已被证明可在发育早期定义自闭症亚型(Bernier 等人,2014 年)。已经研究了来自自闭症谱系障碍遗传模型的人类诱导多能干细胞衍生神经元的细胞表型,揭示了与典型对照细胞相比的细胞差异(Deshpande 等人,2017 年)。在 16p11.2 缺失和重复变异的携带者中也发现了相反的大脑差异(Qureshi 等人,2014 年)。研究探索了小鼠大脑皮层上层神经元与自闭症样特征之间的关系,揭示了这些神经元的过量生产导致自闭症行为(Fang 等人,2014 年)。改变的大脑皮层基因表达、大脑过度生长和功能过度连接也与小鼠的 Chd8 单倍体不足有关(Suetterlin 等人,2018 年)。对发育突触修剪的研究揭示了 LTD 样分子通路在此过程中的作用,对自闭症研究具有潜在意义(Piochon 等人,2016 年)。局部皮质回路的关键期可塑性也得到了探索,强调了这一时间窗口对大脑正常发育和功能的重要性(Hensch,2005)。已发现导致综合征性自闭症的突变定义了突触病理生理学轴,这对我们理解自闭症的潜在机制具有重要意义(Auerbach 等人,2011)。研究人员发现,综合征性和非综合征性自闭症啮齿动物模型中存在共同的突触病理生理学。研究还表明,在携带与自闭症相关的拷贝数变异的小鼠中,小脑可塑性和运动学习能力受损。此外,有自闭症风险的婴儿的白质微结构发生了改变,表明早期大脑发育发生了变化。已发现脑脊液 (CSF) 在神经祖细胞增殖中起着至关重要的作用,可能参与自闭症的早期大脑发育。 CSF 还提供了清除间质溶质(包括淀粉样蛋白 β)的途径。髓鞘形成缺陷在综合征型和特发性自闭症谱系障碍 (ASD) 中很常见。Pten 的体质性错误定位与少突胶质细胞的早熟和 ASD 模型中的异常髓鞘形成有关。前额叶轴突的变化可能会破坏自闭症中的网络,表明连接性发生了改变。活动依赖性髓鞘形成和髓鞘形成神经胶质细胞上的非突触连接促进电活性轴突的优先髓鞘形成。最后,几项研究已经确定了自闭症谱系障碍 (ASD) 的常见遗传风险变异,强调了了解这种疾病背后的复杂遗传学的重要性。这一系列参考文献涉及自闭症谱系障碍 (ASD) 及其早期检测和预测。这些论文探讨了各个方面,包括:* ASD 的生物学,从细胞增殖到临床表型 * 父母的担忧可以预测以后的自闭症诊断 * 18 个月的标记可以预测自闭症儿童的弟弟妹妹以后的结果 * 幼儿自闭症的筛查工具 * 对疑似患有自闭症的幼儿的临床评估和管理 * 使用深度学习和机器学习算法研究精神和神经疾病(包括自闭症)的神经影像相关性 此外,参考文献还涉及: * 深度学习在婴儿脑部 MRI 分析中的作用 * 解决不平衡数据集和改进预测模型的技术 * 从出生到婴儿期自闭症患者的大脑和行为发展 * 预测是人类认知神经科学对人道主义和务实应用的贡献 * 跟踪精神病的维度和分类特征的个体特定功能连接标记 总体而言,这些参考文献为自闭症的早期发现和预测以及机器学习和深度学习算法在该领域的应用提供了见解。最近的研究探索了精神神经影像学在临床环境中的应用,即心理放射学。该领域已显示出利用磁共振成像 (MRI) 和放射组学分析检测精神分裂症和注意力缺陷多动障碍 (ADHD) 的前景。具体而言,研究重点是通过分析大脑图像和基于图形的指标来提高 ADHD 的诊断准确性。研究还检验了对患有自闭症谱系障碍的幼儿进行早期干预的有效性,包括父母介导的疗法和行为干预。此外,人们对精准医疗的兴趣日益浓厚,精准医疗旨在根据患者独特的基因特征为其量身定制治疗方案。另一个研究领域涉及了解自闭症的神经相关性,一些研究表明,出生时的白质连接组可以预测成年后的认知能力。此外,脑成像和机器学习的进步使研究人员能够开发出分析大脑网络和预测神经发育结果的新工具。这些发现对一系列神经和精神疾病的早期诊断、治疗和干预策略具有潜在意义。提到的一些关键研究包括:* Lei 等人。 (2019):研究了全脑图像、全连接组功能连接和基于图形的指标在检测精神分裂症方面的相对诊断价值。 * Port JD (2018):提出使用 MRI 成像和放射组学分析来诊断 ADHD。 * Collins & Varmus (2015):提出了一项关于精准医疗的新举措。 * Dawson 等人 (2010):对患有自闭症的幼儿进行了一项早期干预的随机对照试验,称为早期丹佛模式。 * Kasari 等人 (2015):评估了家长干预对自闭症幼儿的比较效果。这些研究表明,我们正在不断努力提高对精神神经影像学及其在临床环境中的应用的理解。以下文章讨论了自闭症谱系障碍 (ASD) 研究的各个方面,包括诊断、认知特征、大脑功能和遗传因素。这些研究探讨了理解 ASD 的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑 ASD 异质性的重要性,一些研究侧重于父母认知和行为特征在塑造临床变异性方面的作用。其他研究则探讨了早期运动迟缓与后来诊断 ASD 或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解 ASD 的复杂原因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患 ASD 的风险。 2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发育。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的眼球反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种可以消退的良性疾病。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。这些研究探讨了理解自闭症的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑自闭症异质性的重要性,一些研究侧重于父母的认知和行为特征在塑造临床变异性方面的作用。另一些研究则探讨了早期运动迟缓与后来诊断自闭症或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解自闭症的复杂病因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑类器官的出现,这可能有助于了解发育障碍。日本的一系列病例使用视频脑电图监测研究了 4 名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。异常动作包括罕见的反张姿势和眼球偏斜。发作通常由换尿布或喂奶时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的疾病是由于镁营养缺乏引起的婴儿震颤综合征,它会导致快速震颤,在睡眠中消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。这些研究探讨了理解自闭症的不同方法,例如使用机器学习算法来识别认知特征的亚型,分析静息状态功能网络来识别大脑系统的个体特定特征。文章还讨论了考虑自闭症异质性的重要性,一些研究侧重于父母的认知和行为特征在塑造临床变异性方面的作用。另一些研究则探讨了早期运动迟缓与后来诊断自闭症或表达性语言困难之间的关系。这项研究强调了精准医疗方法的必要性,以了解自闭症的复杂病因,重点是开发更有效的诊断工具和治疗方法。研究表明,常见的遗传变异、多基因风险和罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑类器官的出现,这可能有助于了解发育障碍。日本的一系列病例使用视频脑电图监测研究了 4 名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。异常动作包括罕见的反张姿势和眼球偏斜。发作通常由换尿布或喂奶时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的疾病是由于镁营养缺乏引起的婴儿震颤综合征,它会导致快速震颤,在睡眠中消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。以及罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。以及罕见基因突变的附加效应都会增加患自闭症的风险。2012 年和 2016 年的两篇研究论文研究了有自闭症风险的婴儿的沟通延迟。这些研究发现,早期运动技能可以预测自闭症谱系障碍儿童的语言发展。2019 年发表的另一项研究讨论了基于干细胞的脑器官的出现,这可能有助于理解发育障碍。日本的一系列病例使用视频脑电图监测研究了四名 8 至 14 个月大婴儿的颤抖发作 (SA)。发作的特征是凝视、紧张和颤抖,通常在清醒时成群发生,没有意识障碍。不寻常的动作包括罕见的反张姿势和眼球偏斜。这些发作通常由换尿布或喂食时间引发,在 2-3 岁时会消退或显着改善。颤抖发作可能会被误诊为癫痫;然而,在大多数情况下,它们被认为是一种良性疾病,可以得到解决。另一种需要考虑的情况是由于镁营养缺乏导致的婴儿震颤综合征,这种综合征会导致快速震颤,在睡眠期间会消失,需要镁治疗,但可能无法纠正精神运动发育迟缓。
韩国自然农法 (KNF) 是由 Hankyu Cho 创立的一种环保型农耕方式。它利用被称为本土微生物和营养循环的良好天然助手帮助植物和动物茁壮成长。KNF 采用了日本和韩国的古老农耕技术,并使其安全使用,而不是使用可能危害人类和环境的有害化学物质。KNF 希望帮助农民找到一种更好的种植粮食的方法,而不会伤害自然。Cho 先生之所以开始使用这种方法,是因为他想停止在韩国农业中使用刺激性化学物质。他相信大自然可以为种植健康的动植物提供所有答案。KNF 的核心基于营养循环理论,该理论有助于在植物生长的不同阶段选择正确的事物。这样,农民就可以在不花费太多金钱或精力的情况下从小面积获得良好的结果。他们还保护甚至改善了周围的环境。土壤管理在 KNF 中非常重要。农民应该给土壤施肥,土壤会照顾植物。KNF 教导如何利用堆肥、草皮覆盖物和微生物使土壤健康。草皮覆盖物可保护土壤免受侵蚀,保持水分,并为蚯蚓、有益昆虫和微生物提供良好的栖息地。这些微生物助手(本土微生物)可分解有机物质、抵抗疾病并为植物提供营养。然而,如果它们的平衡被破坏,土壤健康就会下降,植物就会变得虚弱,疾病就会发生。KNF 试图通过收集、培养和将不同的微生物引入土壤来保持这种平衡。这些微生物是 KNF 系统的基础。它们帮助农民利用当地原料进行农业投入。一些例子包括发酵植物汁 (FPJ),它由发酵植物材料制成,其中富含微生物、酶和有益于植物生长的营养物质。FPJ 使用健康的植物样本来确保发酵物具有所有必要的特性。促进植物健康。KNF 的 FPJ 可帮助幼苗适应温度变化,同时促进植被生长。它还可以作为害虫引诱剂,单独使用或与其他解决方案结合使用。发酵植物汁在室温下可保持有效长达 30 天,冷藏下可保持有效长达一年。东方草本营养素 (OHN) 是一种天然发酵植物刺激剂,源自草本和香料,经证实可促进植物生长并改善其健康。OHN 结合了肉桂、大蒜和生姜等成分,具有抗菌、杀真菌和抗生素特性,这些特性可通过发酵保留下来。它与其他天然农业投入品(如 IMO-3 和 IMO-4)混合,可处理土壤和种子。作为植物滋补品,OHN 可有效解决植物的根腐病和全身虚弱问题。OHN 需要一些时间来发酵,但可以在 45 天内过滤并使用。为了更快地提取和长期储存,它需要酒精。乳酸菌(Lactobacillus)简称 LAB 是一种厌氧微生物,可将糖转化为乳酸,在卷心菜等植物表面繁衍生息。LAB 与 FPJ 混合可帮助牲畜消化或加速堆肥。在 KNF 中,LAB 通常使用洗米淀粉作为食物来源在牛奶中培养。与 IMO 结合,它可以软化土壤并松动压实,为蓬松、通气良好的土壤创造小通道。LAB 溶液应远离阳光直射,最好冷藏,但与红糖混合后可在室温下保存更长时间。水溶性钙 (WS-Ca) 是一种由蛋壳与醋反应而获得的钙溶液。钙在环境中很常见,有些植物可能难以正确使用它,导致过度生长、生长虚弱或果实脆弱。WS-Ca 为植物提供了一种易于吸收的钙,帮助它们利用其他营养物质并发育出强壮的细胞。它可在 3-10 天内使用,并可无限期地存放在阴凉黑暗的地方。KNF 依靠观察害虫的行为来防止侵扰。理想情况下,多样化的健康植物会阻止或完全混淆害虫。然而,大多数害虫更喜欢特定的植物,因此 KNF 使用芳香昆虫引诱剂 (AIA) 将有害昆虫引诱出耕地。AIA 是 FPJ、FFJ 和白兰地等酒精的混合物,旨在将昆虫吸引到溶液中,防止它们在田间产卵。韩国自然农业强调人道的家禽生产,专注于饲养快乐、健康的鸟类的最佳环境,非常重视鼓励自然通风、加热和卫生的家禽舍的设计。这让鸡能够表现出它们的自然倾向,同时最大限度地减少农民的劳动需求。KNF 的一个核心原则是让鸡直接接触土壤,正如 Cho 先生所倡导的那样,他认为这有助于保持鸟类的健康。但是,在需要混凝土地板的地方也做出了安排。鸡粪的发酵、分解和消毒由土著微生物 (IMO) 协助,因此除非需要用作堆肥,否则鸡粪会留在鸡舍中。Cho 先生设计的系统可以满足鸡的需求,而无需人工加热、使用刺激性化学物质或可疑药物。自推出以来,韩国自然农法一直是有机农业方法的巅峰,激发了 JADAM 有机农业等其他系统的发展。虽然 Jadam 和 KNF 方法有着相似的理想,但它们之间也存在差异,最初 KNF 更复杂,但随着反复实践会变得更容易。营养循环理论旨在通过了解动物和植物在不同生长阶段需要不同的营养,为获得最佳效果提供充足的营养。本土微生物肥料是指在微生物存在下通过分解有机物质而产生的农业投入,与 JADAM 液体肥料的关系比 KNF 更密切。赵大师的工作重点是从自己的废弃物中创造农业投入。这包括使用杂草、野生植物、蛋壳等来制造堆肥、肥料和其他必要的营养物质。他的方法旨在利用发酵植物汁 (FPJ) 和水溶性钙 (WCA) 等技术将农场废弃物回收利用为可用的生物。这些过程产生了用于植物生长的强大工具,例如益生菌溶液和水溶性钙。其他投入包括来自鱼类副产品的鱼氨基酸 (FAA) 和 JADAM 润湿剂 (JWA),赵大师的著作《橙皮书》和《绿皮书》中对此进行了讨论。KNF 通过给予和接受的原则强调农业中的共生关系,促进土壤、植物、昆虫、动物和人类之间的互惠关系。通过关注循环能量流并尽量减少外部投入,KNF 减少了对昂贵投入的外部依赖,从而促进了可持续发展。
美国国家医学图书馆 (NLM) 提供科学文献的访问权限,但不认可或同意其内容。相反,交叉污染对食品安全构成重大风险,需要有效的清洁和消毒方案,这些方案需要通过表面采样协议进行验证、监控和验证。单独使用视觉评估是无效的,但可以作为监测表面残留污染的综合方法的一部分。微生物和非微生物检测方法在检测表面污染方面的有效性进行了比较。非微生物评估方法(例如 ATP 测试)可有效监测残留的表面污垢,而传统的微生物方法可以指示残留的微生物污染,但不能指示表面污垢。分子微生物方法和生物发光测试的最新进展提供了改进的检测能力。没有单一的理想表面测试方法;采样方法应考虑指导方针、综合策略和趋势分析。清洁对于去除表面的“污垢”和保持各种环境中的清洁至关重要。人类的接受度和消费者行为在确定清洁标准方面起着重要作用。清洁的环境对于预防疾病至关重要,肮脏的环境会促进病原体的传播。在食品行业,充分清洁对于防止交叉污染至关重要,尤其是对于即食食品。然而,人类食物过敏原或食物腐败生物的痕迹也可能带来健康风险并影响产品的保质期,这凸显了有效的清洁实践在保持清洁和安全标准方面的重要性。食品生产场所的清洁:法律和财务要求食品生产场所的环境监测是确保食品质量和安全的一个重要方面。虽然食品加工商可能会进行环境采样,但一些州和国家为执法人员提供了如何有效开展此项活动的指南。适当的清洁不仅对于保持食品卫生至关重要,而且出于财务原因也至关重要。清洁不充分会导致设备故障、效率降低和成本增加。清洁通常是一项立法要求,欧盟在其关于食品卫生的法规 (EC No. 852/2004) 中对此进行了规定。英国零售商协会的全球食品安全标准规定了食品安全的最低标准,包括清洁和清洁程序的要求。该标准强调了评估清洁效果、定义可接受和不可接受的清洁度水平以及记录结果的重要性。不符合这些标准可能会给食品制造商带来重大经济损失。除了财务影响外,清洁不当也会导致食品接触表面微生物的生长。这些微生物对环境压力表现出各种生理和遗传反应,使它们能够在非理想条件下生存。微生物滋生的因素包括它们能够产生应激反应并形成难以去除的生物膜。总体而言,保持食品生产场所清洁是确保食品安全和质量的关键方面。这对于遵守监管要求至关重要,并且可能对食品制造商产生重大的财务影响。监测清洁计划的重要性在于检测微生物、有机残留物或两者,这些物质可能存在于受污染的设备和环境表面上。与细菌、酵母和霉菌不同,病毒是专性细胞内寄生虫,只能在活细胞内生长,但可以在宿主外存活数天或数月,形成潜在的感染源。交叉污染是一个重要的风险因素,与高达 38% 的疫情有关,但其实际影响可能被低估。为了防止交叉污染,必须整合食品安全管理实践,包括场所设计、个人卫生和清洁。研究通过对食品处理活动和疫情病例的观察性研究,表明了预防交叉污染的重要性。案例研究 1 来自一家瑞士三明治工厂,在环境拭子和产品中发现了单核细胞增生李斯特菌,这凸显了需要进行环境监测以识别潜在的污染问题。清洁计划的修订解决了这个问题,强调了此类措施的重要性。案例研究 2 来自一家美国乳制品厂,在产品样本和环境拭子中发现了单核细胞增生李斯特菌,表明受污染的设备如何导致交叉污染。交叉污染是导致新兴病原体患病的关键因素,其中许多病原体的感染剂量较低。交叉污染的严重程度因病原体而异,一些病原体如 STEC 和弯曲杆菌的影响为中度至重度。间接交叉污染涉及一系列复杂的步骤,包括手、设备和表面,这说明需要全面的食品安全管理实践。必须认识到,表面采样和交叉污染不仅限于较潮湿的食品加工环境,而是广泛适用于不同的环境。巧克力、花生酱或干面条等低风险食品与食源性疾病爆发有关(Kornacki,2006 年)。在干燥的食品加工环境中,检测环境表面是否存在沙门氏菌或阪崎克罗诺杆菌以及酵母和霉菌等病原体至关重要(Kornacki,2006 年)。在屠宰场,手部接触表面通常受到严重污染,除非将高风险区域和低风险区域分开,否则将存在交叉污染的风险。这可能导致即食食品受到污染。企业被鼓励采用基于风险的方法来评估交叉污染,但这仍然是风险评估中的致命弱点(Griffith 和 Redmond,2005 年)。有效的清洁管理对于减少交叉污染的机会至关重要,但清洁计划中经常忽略手部接触表面(Griffith 和 Redmond,2005 年)。环境病原体污染食物的可能性约为 70%,其中单核细胞增生李斯特菌尤其令人担忧。楼层图/地图可以帮助评估潜在的交叉污染风险,并且是 BRC(2015 年)等标准所要求的。清洁管理的战略方法包括设计、建造和维护设备和场所,以消除难以清洁的区域,最大限度地减少交叉污染的机会,并确保有效的清洁规程。然而,如果没有合规文化和高级管理层的承诺,单靠规程是不会成功的(Griffith,2014 年)。清洁方法的实施是 BRC 等认证标准的一项关键要求,通常基于标准操作程序 (SOP)。清洁文件通常包括政策声明、时间表、程序、详细说明和记录表。越来越多的软件工具被用于支持该过程。审计员经常要求访问清洁计划、结果和从监控中获得的趋势。清洁方案必须是最新的,并且是记录控制系统的一部分,全面涵盖清洁设备和材料。必须认识到,清洁不能消除所有污垢,这对设备、水等材料有影响。未能正确维护清洁设备会导致交叉污染。一项研究发现,附着在清洁工具上的杆状菌和球菌在基因上与从相关食品中分离出来的杆状菌和球菌相同。清洁程序中的典型阶段包括:1. 预清洁 - 去除松散的食物或污垢、刮擦、吸尘等。2. 主清洁 - 去除更牢固地粘附的食物残渣、油脂或污垢3. 冲洗 - 去除清洁剂和乳化/溶解的污垢和油脂其他阶段可能包括消毒选项,以将残留的表面微生物数量降低到较低或可接受的水平。但是,消毒后是否需要冲洗尚有争议,有些指令允许在不存在可能对食品、人员或设备产生不利影响的残留化学物质的情况下将其作为一种选择。杀菌剂的耐药性是一个问题,但必须与可用水的质量、再污染的风险以及保持干燥加工环境的需要相平衡。在美国,消毒剂已为非冲洗应用设定了限制,并在较高水平使用它们,然后冲洗,可以帮助确保表面计数在可接受的范围内。一些处理器还使用额外的“终端消毒”阶段,例如臭氧或过氧化氢蒸汽,这可以在分解前提供额外的杀灭作用。然而,使用这些方法的决定取决于清洁化学品、水质、产品类型和风险水平等因素。全面的清洁实施方法至关重要,包括结合清洁和消毒方案,这些方案通过功效测试或表面采样进行验证和验证。例行审计也可以提供关于清洁效果的宝贵见解。没有单一的“理想”方法来评估清洁和消毒效果,因为所选方法必须考虑潜在表面污染、要控制的危害和所需的清洁度水平等因素。清洁表面的理想方法应该足够灵敏,能够在湿润和干燥的表面上有效工作,具有良好的可重复性和易用性。它还应该快速、便宜、万无一失,以便进行准确的趋势分析。该过程涉及去除有机残留物,例如食物残渣和过敏原,这有助于减少微生物生长并为消毒表面做好准备。低残留微生物数量对于防止食品污染和变质至关重要。清洁表面上是否存在水分会显著影响交叉污染的预防。表面之间的转移率可能有很大差异,并且会因水分而增加,但必须小心干燥以避免再次污染。存在各种方法来评估清洁和消毒的效果,包括目测评估、微生物拭子和快速非微生物化学检测方法,如 ATP 测试。这些较新的测试通过检测污垢而不是微生物来提供更真实的清洁度评估,提供主动的清洁度管理,并及时提供结果以采取纠正措施。在评估表面清洁度方面,微生物和非微生物方法各有优缺点。非微生物方法主要关注残留的有机表面碎片,但也可以通过 ATP 测试检测微生物污染,ATP 测试可以识别低至 104 CFU/mL 的细菌。然而,这些测试不考虑病毒或细菌孢子。微生物学方法仅提供残留表面生物数量的快照,而不表明表面有机污染的程度。食品环境中的表面微生物计数和 ATP 读数之间不太可能存在直接相关性,可能被认为是巧合,因此不可靠。清洁的有效性不能仅由这些方法确定,因为它们没有考虑产品残留物或不同类型的食品污染等各种因素。例如,ATP 含量高的食物可能微生物数量低,而生食可能 ATP 增加相对较低,但微生物数量增加较多。最近,ATP 技术已与评估酸性磷酸酶(一种在生肉和家禽中发现的酶)联系起来。这种方法涉及使表面拭子反应 2 或 5 分钟,光发射越多表示表面越不干净。本章旨在进一步回顾这些方法,以确保通过综合的表面采样计划保持适当且具有成本效益的清洁实践。人们已经探索在清洁前将染料应用于表面作为检测安全或感官问题的一种手段,尽管其在非食品接触区域的有效性尚不确定。一种简单的方法是将透明胶带贴在表面上,然后可以在移除后在光学显微镜下检查。已经开发了更先进的技术,例如荧光和共聚焦扫描激光显微镜,但对于食品企业的日常使用来说并不实用。另一种方法利用 ATP 生物发光测定来评估表面清洁度。酶-底物复合物荧光素-荧光素酶将与 ATP 相关的化学能转化为光,发射的光量与表面上的 ATP 量成正比,因此与表面的清洁度成正比。该方法以相对光单位 (RLU) 测量光,并需要代表可接受清洁值的基线数据。光度计的功能各不相同,有些型号除了标准检测外还提供一系列其他测试。一些光度计使用光电倍增管,而另一些则使用基于光电二极管的系统。每种方法都有其优点和缺点。光电二极管仪器通常更实惠且更坚固,但可能会影响测试灵敏度。为了缓解这种情况,制造商可以调整其试剂、配置或包装中使用的化学成分。选择光度计时,必须同时考虑仪器性能和测试化学成分(线性、灵敏度、重复性和准确性)。有各种报告和建议可帮助您做出明智的决定。许多较新的型号都配备了趋势分析软件,可以帮助跟踪不同地点和工厂随时间变化的数据。一些制造商通过将测试探针和设施集成到光度计中来提供 pH 和温度测量等附加功能。但是,如果设备出现故障,这些增强功能可能会带来复杂性和潜在问题。最终,仪器与其设计的测试相结合的性能对于确定适用性至关重要。大多数制造商提供校准和正/负控制以确保准确性。分析测试的简化使非技术人员能够使用简单的一体化分析进行测试。然而,这些检测中使用的化学配方在不同供应商之间可能存在很大差异,从而影响保质期和储存要求。ATP 水平会因食品类型和加工方式而有很大波动。高度加工的食品通常含有少量 ATP,而西红柿等新鲜食品的 ATP 浓度可能较高。在消毒过程中使用的清洁剂会影响测试结果,因此在测试前冲洗设备至关重要。不同制造商的仪器灵敏度各不相同,有些制造商的灵敏度高于其他制造商。ATP 测试的理想灵敏度水平仍是一个争论话题,讨论的重点是寻找检测低水平和避免过度灵敏度之间的平衡。清洁度标准因企业内的特定表面和区域而异,例如无菌灌装产品与排水管中的表面和区域。制造商提供了清洁度指南,但通常最好由食品企业自己决定,以指导持续改进工作。一种称为 ATP 生物发光的技术已被开发出来用于测量清洁度,一些制造商已采用这种方法来检测低至 0.1-5 ppm 的过敏原残留物。随着 ATP 生物发光的发展,其他针对各种成分(如蛋白质、糖和 NAD)的化学检测方法已被研究作为快速清洁测试。这些测试通常在几分钟内产生单色最终产品,可以用廉价的样品仪器进行目视评估或记录。这些测试的灵敏度各不相同,因此有些测试比其他测试更适合食品企业。使用快速化学测试时要考虑的因素包括测试的普遍性、灵敏度、成本、结果所需时间、简单性和记录能力。每个食品企业必须根据其具体情况和生产的食品类型选择最合适的测试。蛋白质检测方法在检测高蛋白食品(如家禽或乳制品)方面具有潜力,并且在检测过敏原方面也具有特殊用途,因为许多重要的食品过敏原本质上都是蛋白质。给出文章文本这里使用拭子测试检测食品表面的微生物可以提供有关污染程度和病原体存在的宝贵见解。这些测试可以检测蛋白质残留物,这表明有机污染,灵敏度水平从 1 到 10 µg 不等。产生的颜色强度与污染程度直接相关,尽管结果通常以通过/未通过的形式呈现。另一种广泛使用的测试检测 NAD,这是一种化学残留物,可以衡量有机污染。其他基于拭子的测试可以检测低至 2.5 µmol 的葡萄糖或葡萄糖和乳糖。葡萄糖通常存在于食物残渣中,而乳糖测定对乳制品行业特别有用。然而,这些快速化学检测有局限性,包括灵敏度低于同等的 ATP 检测。阴性结果不能用来排除微生物的存在。微生物表面采样的历史悠久,可以追溯到 20 世纪二三十年代。早期的方法基于擦拭,后来开发了直接琼脂接触法。然而,分子方法在未来可能会变得更加普遍。食品工业中使用的主要微生物学方法包括使用拭子、海绵或抹布从表面回收生物,然后在营养培养基上培养。这些测试可用于估计存在的一般或指示生物的残留数量,从而提供清洁效果的证据。指示生物可以反映表面微生物的质量并指示潜在的风险。病原体检测是一种独特的方法,涉及检测可能对公共健康构成风险的特定病原体,例如单核细胞增生李斯特菌。这种类型的测试需要不同的理念方法,并且通常与其他方法结合使用。在检测病原体时,通常需要检查更大的表面面积,而不仅仅是一小部分。所用的介质可以是固体、液体或半固体,通常用拭子接种。要确定病原体是否存在,必须测试足够大的表面面积。如果要寻找清洁度,则应擦拭特定区域,而如果要寻找病原体,则应测试更大的区域。在微生物检测中,回收效率 (RE) 起着至关重要的作用,并且可能因所用方法、微生物类型和测试表面而异。接触板和浸片等接触方法更易于使用,并且可以提供更好的结果,如两次大规模比较所示,尽管差异并不总是很大。然而,所有培养方法都有其挑战,特别是从培养表面去除生物。为了克服这个问题,人们使用了“冲洗”表面,其中冲洗液被用作微生物的来源。最近,人们尝试使用超声波去除表面微生物,尤其是生物膜中的微生物,这引发了人们对回收数量与产品污染的有效性和重要性的质疑。微生物方法的选择取决于所需的具体信息和当前的情况,拭子法被广泛使用,但也有其局限性和缺点。接触板和浸片比拭子法具有更好的可重复性,但也有其自身的挑战和要求。所需的最低限度的培养设施便携式装置可以测试用螺帽密封的冲洗水,保质期长 桨叶带铰链,更易于在平面上使用 只有运动生物才能覆盖琼脂表面 需要培养和灭菌处理设施 表面可能有琼脂残留 无法估计产生可数菌落的表面种群 存在可存活但不可培养 (VBNC) 细菌的风险 擦拭方法仍然是最古老且广泛用于表面监测 擦拭技术的变化会影响结果 回收率低,特别是在低表面种群密度下 缺乏可靠性、可重复性和再现性 有各种标准方法可用,包括 ISO 18593:2004 关于最佳擦拭方案及其对回收率的影响的基本信息仍然缺乏。回收率可看作是从表面去除微生物、在样品采集过程中释放微生物以及随后生长潜力的函数。实际回收率差异很大,从 0.1% 到 25% 不等,具体取决于所采用的技术。拭子类型、表面类型和微生物类型等因素会极大地影响回收率。微生物一旦附着在表面,尤其是生物膜上,就会变得越来越难以去除。此外,由于微生物滞留在芽纤维内,可重复性和灵敏度较差。改进流程一个方面的技术可能会对另一个方面产生负面影响,需要在不同组件之间进行权衡或妥协。缺乏标准化可能使解释单个环境拭子的结果变得困难,可能会导致对清洁效果产生错误的印象。拭子最适合使用多个测试结果来确定随时间推移的性能趋势。了解回收率的问题有助于改进和控制流程。用于保持等渗条件和减少生理压力的采样溶液可用于在运输过程中保持微生物的活力。选择这些溶液时需要小心,通过提供生长培养基来防止人为夸大计数。一些表面可能仍有残留消毒剂,需要中和剂。理想情况下,拭子应及时处理;然而,这通常是不切实际的。与实时分析相比,低温非冷冻运输可以最大限度地减少差异。在解释结果时,可以识别和考虑与常态有显著偏差的结果。需要考虑时间和润湿剂等因素,并针对特定病原体进行优化。应适当选择预富集培养基,但需要考虑非病原体的过度生长。一些制造商在其润湿溶液中添加表面活性剂,以提高从测试表面的“拾取”,这可以人为地增加菌落计数。由于担心拭子芽无法释放回收的微生物,一家制造商开发了一种新型拭子,这种拭子可以释放更多的微生物,从而实现更好的整体回收。另一种方法是使用真空细菌收集系统,这样无需拭子即可进行更大的表面评估。另一种方法是将独立的“一体化培养基和卫生拭子”放入试管中,以更快的速度获得结果。拭子在测试表面后返回到含有琼脂和指示剂系统的培养管中,使微生物生长并通过颜色变化检测其存在。不干净的表面可以在 12 小时内检测出阳性,具体取决于微生物污染水平。使用非特异性培养基可获得一般需氧菌落计数,而选择性或富集培养基则用于特定病原体或指示剂。指示剂系统基于显色、荧光或生物发光检测原理,可在 18 小时内检测出相关微生物。最近,将培养与生物发光测试相结合,可将严重污染表面的检测时间缩短至 1 小时,轻度污染表面的检测时间缩短至 8 小时。生物发光测试可用于大肠菌群、肠杆菌科、大肠杆菌和李斯特菌,从而可以在进一步生产食品之前迅速采取纠正措施。在 ATP 测定中使用光度计将其功能扩展到了传统的估计表面残留物中 ATP 的方法之外。海绵的工作原理与擦拭类似,即从表面去除微生物,释放它们,然后培养它们进行分析。恢复过程包括用压缩的无菌海绵擦拭测试表面,测试表面可能已预先润湿或需要润湿剂。为了避免污染,通常使用无菌手套握住海绵。接种后,将海绵密封在无菌信封中并运送到实验室,在那里搅拌并计数释放的生物。海绵在放回富集培养基中时,对病原体检测具有更高的灵敏度,并且不受附着在其基质上的微生物的影响。一些海绵的表面积比传统拭子大,因此可以测试更大的表面并施加更大的压力。变化包括法国用于擦拭表面的棍棒海绵和纱布。研究还表明,静电擦拭布的性能优于传统拭子(Lutz 等人,2013 年)。其他直接琼脂接触方法,称为“印刷方法”,涉及将无菌琼脂压在要采样的表面上。琼脂吸收微生物,然后繁殖并形成孵育后可见的菌落。这种方法最适合光滑、平坦的表面,并且琼脂的分散方式有所不同。可以使用各种方法计数微生物,包括接触板和浸片。这些工具还可用于计数食物、水或冲洗水中的液体样本中的生物。最近,已经开发出一种混合平板/浸片,用于测试不规则形状的表面。其他变化包括使用 Petrifilm 代替传统的琼脂平板进行培养。Petrifilm 是涂有营养物质和胶凝剂的薄膜,可以用 1 毫升去离子水重新水化以提供表面计数。还发现一种新型滚筒采样器比传统接触平板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能出现过度生长的非常污染的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确的计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来针对微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专长和高成本设备,使其更适合于爆发调查或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一个生物。培养产生的活细胞很少,而 qPCR 显示出更高的结果,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或Petrifilm 是涂有营养物质和胶凝剂的薄膜,可用 1 mL 去离子水重新水化以提供表面计数。还发现一种新型滚轮采样器比传统接触板的产量更高。直接琼脂接触法有几个优点,包括易于使用、成本更低、回收率和可重复性更好。然而,它们更适合平坦表面,在可能过度生长的污染严重的表面上可能会出现问题。这会使统计分析变得具有挑战性。尽管如此,这种方法适用于指示清洁充分性,而不是提供精确计数。与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可以同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们不能区分活体生物和非感染性核酸,只能表明该生物在某个阶段存在。分子方法需要技术专长和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,其推导方式各不相同,基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些推荐的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或与直接琼脂接触法相比,分子方法速度更快、灵敏度更高、特异性更强。这些技术使用基于 DNA 或 RNA 的扩增方法(如 PCR、RT-PCR 和 NASBA)来靶向微生物核酸的特定部分。实时 PCR 可同时进行扩增和检测。虽然分子方法可用于检测微生物,但它们无法区分活体生物和非感染性核酸,仅表明生物在某个阶段存在。分子方法需要技术专业知识和高成本设备,因此更适合用于调查疫情或追踪工厂内的微生物。然而,协议的进步可能会导致它们在未来更多地用于评估消毒效果或估计微生物种群。清洁度风险评估需要了解生物数量和定量实时 PCR (qPCR) 等分子技术。一项研究比较了表面培养和 qPCR,但只测试了一种生物。培养产生的活细胞很少,而 qPCR 显示的结果更高,包括非活细胞。可能需要对样品进行预处理,这会增加成本和时间。起诉通常依赖于视觉评估,除此之外没有其他清洁度的法律标准。然而,已经提出了一些指导方针,这些指导方针的推导各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或除了这个标准之外,没有其他清洁度的法律标准。但是,已经提出了一些指导方针,这些指导方针的推导方式各不相同,并且基于感知风险或可接受性。为了解决这个问题,请考虑经过精心设计的清洁程序后可以实现什么。变化会削弱对结果的信心,因此控制变化源至关重要。一些建议的清洁表面指导方针包括 80 CFU/cm2、5 CFU/cm2 或