1. 西班牙加那利群岛拉斯帕尔马斯大学生物医学与健康研究所 (IUIBS),生物化学与分子生物学、生理学、遗传学和免疫学系。 2. 西班牙萨拉曼卡生物医学研究所 (IBSAL)、癌症分子和细胞生物学研究所-CSIC 和 CIBERONC。 3. 西班牙加那利群岛加那利群岛癌症研究所 (ICIC)。 4. 西班牙加那利群岛拉斯帕尔马斯大学生物医学与健康研究所 (IUIBS)、分子与转化药理学、临床科学系。 5. 西班牙加那利群岛拉斯帕尔马斯大学生物医学与健康研究中心 (IUIBS) 和马德里自治大学“Alberto Sols”CSIC 生物医学研究所附属于 CSIC 的生物医学单位,马德里,西班牙 6. 美国费城天普大学计算分子科学研究所和化学系。 7. 美国南卡罗来纳大学药学院药物研发和生物医学科学系,哥伦比亚,美国。 8. 西班牙加那利群岛拉古纳大西洋药物中心(CEAMED SA)。
摘要:由卵质病原体葡萄球菌引起的柔软霉菌是葡萄藤的毁灭性疾病。viticola分泌一系列RXLR效应子,以增强毒力。这些效应子之一PVRXLR131据报道与葡萄(Vitis Vinifera)BRI1激酶抑制剂(VVBKI1)相互作用。BKI1在尼古蒂亚纳·本塔米亚娜和拟南芥中保存。但是,VVBKI1在植物免疫中的作用尚不清楚。在这里,我们发现VVBKI1在葡萄藤和本塞米亚氏菌中的瞬时表达分别提高了对葡萄球菌和phytophthora capsici的耐药性。此外,VVBKI1在拟南芥中的异位表达可以增加其对由透明质球拟南芥引起的降低霉菌的抵抗力。进一步的实验表明,VVBKI1与细胞质抗坏血酸过氧化物酶VVAPX1(一种ROS扫除蛋白)相互作用。VVAPX1在葡萄和本塔米亚乳杆菌中的瞬时表达促进了其对葡萄球菌的耐药性和辣椒菌。此外,VVAPX1转基因拟南芥对拟南芥的抗性更具耐药性。此外,VVBKI1和VVAPX1转基因拟南芥均显示出抗坏血酸过氧化物酶活性的升高和疾病的增强。总而言之,我们的发现表明APX活性与对Oomycetes的抗性之间存在正相关,并且该调节网络在V. Vinifera,N。Benthamiana和A. thaliana中得到了保存。
摘要 背景 高度免疫抑制的肿瘤微环境的存在限制了免疫检查点治疗 (ICT) 的成功。免疫抑制髓系细胞和活性氧产生增加是这种免疫抑制肿瘤微环境的关键驱动因素。需要采取限制这些免疫抑制髓系细胞的策略来增强对 ICT 的反应。方法 为了评估髓过氧化物酶 (MPO)(一种髓系限制酶和活性氧的主要来源)对介导 ICT 反应的贡献,我们使用已建立的原发性黑色素瘤模型比较了野生型、MPO 缺陷型 (MPO −/−) 和 MPO 抑制剂治疗的野生型小鼠的治疗结果和免疫组成。结果 肿瘤生长和存活研究表明,在两种老年动物已建立的原发性黑色素瘤临床前模型中,宿主缺陷型 (MPO −/−) 或药物抑制 MPO 均增强了 ICT 反应。 MPO -/- 小鼠的肿瘤微环境和全身免疫状况发生了显著变化,髓系细胞、T 细胞、B 细胞和树突状细胞的浸润情况也发生了显著变化;此外,在 ICT 无反应者中观察到髓系细胞显著增加。MPO -/- 小鼠在 ICT 反应期间 CD4 + T 细胞和 NK 细胞的贡献也发生了变化。有趣的是,从未经治疗的黑色素瘤小鼠的骨髓、脾脏和腹腔中分离出的 CD11b + Ly6G + 髓系细胞中,MPO 酶活性增加,但蛋白质没有增加,这表明先天免疫被全身激活。值得注意的是,将 MPO 特异性抑制剂 (verdiperstat、AZD5904) 与 ICT 结合使用,可明显提高反应率,高于单独使用 ICT。事实上,在使用 verdiperstat 加 ICT 治疗的 YUMM3.3 黑色素瘤模型中,长期生存率为 100%。结论 MPO 是导致已确诊黑色素瘤对 ICT 产生耐药性的原因之一。重新利用 MPO 特异性抑制剂可能是一种有前景的治疗策略,可增强 ICT 反应。
摘要:过氧化物酶体增殖激活受体 α、γ 和 β / δ (PPAR α、PPAR γ 和 PPAR β / δ) 是一类配体激活的转录因子,属于核受体超家族,可调节参与脂质和碳水化合物代谢、能量稳态、炎症和免疫反应的基因表达。因此,它们成为治疗各种代谢疾病的有吸引力的靶点,最近,由于其新出现的神经保护作用,它们还成为治疗神经退行性疾病的有吸引力的靶点。激活程度(从部分到完全)以及对不同异构体的选择性极大地影响了 PPAR 激动剂的治疗效果和安全性。因此,人们对具有适当活性和选择性组合的新型支架非常感兴趣。本综述旨在概述来自海洋的 PPAR 调节剂的发现、优化和结构-活性关系研究,以及导致其鉴定和/或阐明的结构和计算研究以及其作用机制的合理化。
循环肿瘤细胞是原发性肿瘤和远处转移之间的关键环节,但一旦进入血液,粘附力丧失就会诱导细胞死亡。为了确定与黑色素瘤循环肿瘤细胞存活相关的机制,我们进行了 RNA 测序,发现分离的黑色素瘤细胞和分离的黑色素瘤循环肿瘤细胞通过上调脂肪酸 (FA) 转运和 FA β 氧化相关基因来重新连接脂质代谢。在黑色素瘤患者中,FA 转运蛋白和 FA β 氧化酶的高表达与无进展生存期和总生存期的降低显着相关。黑色素瘤循环肿瘤细胞中表达最高的调节剂包括肉碱转移酶肉碱 O-辛酰基转移酶和肉碱乙酰转移酶,它们控制过氧化物酶体衍生的中链 FA 向线粒体的穿梭,为线粒体 FA β 氧化提供能量。抑制肉碱 O-辛酰转移酶或肉碱乙酰转移酶,并用过氧化物酶体或线粒体脂肪酸β-氧化抑制剂硫利达嗪或雷诺嗪进行短期治疗,可抑制小鼠黑色素瘤转移。肉碱 O-辛酰转移酶和肉碱乙酰转移酶耗竭可通过补充中链脂肪酸来挽救,这表明过氧化物酶体脂肪酸供应对于非粘附性黑色素瘤细胞的存活至关重要。我们的研究发现,针对过氧化物酶体和线粒体之间基于脂肪酸的串扰是抑制黑色素瘤进展的潜在治疗机会。此外,发现美国食品和药物管理局批准的药物雷诺嗪具有抗转移活性,具有转化潜力。
场梯度(见公式 1),这可以通过尖锐的电极几何形状产生。这样,亚微米颗粒(例如聚苯乙烯珠和病毒颗粒)也可以通过 DEP 分离或固定 [4,5]。尽管该现象背后的机制仍然是近期研究和讨论的主题 [6–10],但蛋白质 [11,12]、酶分子 [13] 甚至小染料分子 [14] 也可以通过 DEP 操纵。由于在纳米电极上的固定无需标记并且在几秒内完成 [15,16],DEP 可能成为生产生物传感器的一种首选方法。此外,蛋白质分子可以单个固定,正如对平面纳米电极尖端和 R-藻红蛋白 (RPE) 所展示的那样 [12]。首次尝试生产用于单分子实验的蛋白质纳米阵列时,将牛血清白蛋白 (BSA) 固定在一个由 9 个电极组成的小纳米电极阵列上,电极尖端直径为 30 nm。根据施加的场强,蛋白质分子被永久或暂时固定,但尚未证明可以分离为单个分子 [15]。为了将单个酶或蛋白质分子固定在阵列上,需要直径小于颗粒直径的尖锐电极尖端 [16, 17]。通过反应离子刻蚀在硅基电极阵列的标准互补金属氧化物半导体生产工艺方面取得的最新进展使足够小的电极尖端的生产标准化成为可能:生产出数千个锥形电极的阵列,其最小直径约为 1.5 nm,通过化学机械抛光可以调整到更大的直径 [16]。对于生物传感器、芯片实验室设备和单酶分子实验,不仅要确保可靠的捕获,还要确保所涉及酶的高残留活性。原则上,估算了固定化的BSA 的量[18],并显示了抗RPE 抗体和辣根过氧化物酶 (HRP) 的活性[13, 19]。但无法对固定物的活性进行绝对量化。为了评估DEP 固定化酶阵列的适用性,本研究对仅通过DEP 永久固定的酶分子活性进行了定量测定。选择HRP 作为模型酶。HRP 是单亚基、44 kDa 血红素蛋白,具有已知的三维结构和催化途径以及复杂的糖基化模式[20, 21]。这种酶已被深入研究了几个世纪,由于其可用性、高稳定性以及在比色和荧光测定中的高活性,已成为诊断试剂盒和免疫测定的标准化学品[22]。出于类似的原因,它是单酶分子实验的原理验证中很受欢迎的酶[23–28],并且已经证明在纳米电泳后具有活性。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2021年9月11日发布。 https://doi.org/10.1101/2021.09.10.459878 doi:Biorxiv Preprint
过氧化氢(H 2 O 2)是生物医学诊断中的重要分析物。在人类生理学中,H 2 O 2充当氧化应激的生物标志物,这可能与诸如阿尔茨海默氏病,帕金森氏病,心肌梗死和癌症等医学疾病有关。[1,2]此外,基于氧化酶的生物传感器检测用于检测葡萄糖,尿酸和神经递质等分析物,依赖于监测在酶促反应过程中产生的H 2 O 2的浓度。[3,4]用于检测H 2 O 2的生物传感器主要在光学和 /或电化学技术上运行,并采用过氧化物酶辣根过氧化物酶(HRP)。尽管基于HRP的生物传感器对H 2 O 2检测具有很高的选择性和敏感性,但诸如高成本,短期货架寿命和环境不稳定性之类的因素限制了其更广泛应用的性能。[2]这导致了许多研究,其中探索了用于生物敏化应用的替代性非酶实体,称为过氧化物酶模拟物,它们具有用于H 2 O 2检测的固有性过氧样催化活性。[5,6]迄今为止,已知多种材料,例如贵金属纳米颗粒,金属氧化物纳米颗粒,基于碳的纳米材料和过渡金属络合物,都模仿过氧化物酶活性。[5,7]
过氧化物酶体增殖激活受体 (PPAR) 是一组核受体蛋白,可促进配体依赖性的靶基因转录,从而调节能量产生、脂质代谢和炎症。PPAR 超家族包含三种亚型,即 PPAR a、PPAR g 和 PPAR b / d,它们在不同组织中的分布不同。除了在调节能量平衡和碳水化合物和脂质代谢方面发挥不同作用外,PPAR 的一个新兴功能还包括维持肠道组织的正常稳态。PPAR a 激活可抑制 NF- k B 信号传导,从而降低不同细胞类型的炎症细胞因子产生,而 PPAR g 配体可抑制巨噬细胞的激活和炎症细胞因子的产生,例如肿瘤坏死因子-α (TNF- a)、白细胞介素 (IL)-6 和 Il-1 b。在这方面,PPAR 激活引起的抗炎反应可能会恢复与炎症性肠病 (IBD) 相关的生理病理失衡。因此,PPAR 及其配体具有重要的治疗潜力。本综述简要讨论了 PPAR 在最重要的 IBD、溃疡性结肠炎 (UC) 和克罗恩病 (CD) 的生理病理学和治疗中的作用,以及一些具有 PPAR 活性的新型实验化合物作为 IBD 治疗的有希望的药物。
这种材料会导致某些人接触后皮肤发炎。这种材料可能会加重任何已有的皮炎。皮肤接触不被认为会对健康产生有害影响(根据欧盟指令的分类);但通过伤口、病变或擦伤进入后,这种材料仍可能对健康造成损害。开放性伤口、擦伤或发炎的皮肤不得接触这种材料。通过例如割伤、擦伤或病变进入血液可能会产生具有有害影响的全身性损伤。在使用该材料之前检查皮肤,确保任何外部损伤都得到适当的保护。过氧化氢局部用作牙科凝胶并用于清洁小伤口。它可能对皮肤造成剂量依赖性影响,包括漂白、起泡、发红和腐蚀(浓度 >50% 时)。
