3.A 1.A 1.A用于空调的建筑物,居住空间中的夏季和冬季手术温度范围符合CIBSE指南中规定的标准,设计了设计的环境标准(79),表1.5;或其他适当的行业标准(在建筑类型中为建筑类型设定了更高或更合适的要求或水平);或占用空间中的热环境符合B类,PPD,PMV和ISO 7730:2005附件A的表A.1中列出的本地不适。3.b对于自然通风的建筑物:3.b.i 3.B.I冬季手术温度范围占用的空间范围符合CIBSE指南中规定的标准,指南设计的环境标准,表1.5。或其他适当的行业标准(在建筑类型中为建筑类型设定了更高或更合适的要求或水平)。3.b.ii 3.b.ii建筑物旨在根据适当的以下任何标准中概述的自适应舒适方法限制过热的风险; CIBSE TM52:热舒适的极限:避免在欧洲建筑物中过热(80)或CIBSE TM59:用于评估家庭中过热风险的设计方法(81)。
在实验神经科学领域,用于记录大量神经元的电学和光学方法都取得了重大进展,每种方法都有各自的优势。通过开发荧光蛋白,如基因编码的钙指示剂(例如 GCaMP6/7[6,7])和电压敏感荧光蛋白(例如 Archon [8] 或 QuasAR [8,9]),用于记录神经活动的光学方法取得了重大进展。这些新的荧光探针使功能成像实验能够同时记录多达 10,000 个体内神经元 [2,8,9]。虽然这些都是强大的实验工具,但基于荧光蛋白的方法在临床转化中面临重大障碍,并且只能在没有植入式光学器件的情况下记录大脑的浅层区域。此外,外源性荧光蛋白的表达需要对宿主细胞进行修饰,这在应用于人类时具有重大的安全性和监管意义。最后,光在大脑中的散射和脑组织的热敏感性为开发一种可在空间上解析活动而不会使组织过热的实用植入式成像系统带来了重大的工程挑战 [10,11]。
电子设备已经渗透到现代生活的方方面面,从玩具、家用电器到高功率计算机。系统中电子设备的可靠性是系统整体可靠性的主要因素。电子元件依靠电流的通过来执行其任务,它们成为过热的潜在场所,因为电流通过电阻时会产生热量。电子系统的不断小型化导致单位体积产生的热量急剧增加,其数量级可与核反应堆和太阳表面的热量相媲美。除非设计和控制得当,否则高发热量会导致电子设备的工作温度过高,从而危及电子设备的安全性和可靠性。电子设备的故障率会随着温度的升高而呈指数级增长。此外,由于温度变化导致安装在电路板上的电子元件焊点中产生高热应力,这是导致故障的主要原因。因此,热控制在电子设备的设计和操作中变得越来越重要。在本章中,我们讨论了电子设备中常用的几种冷却技术,例如传导冷却、自然对流和辐射冷却、强制风冷、液体冷却和浸没冷却。本章旨在让读者熟悉这些技术并对其进行透视。有兴趣深入了解这些主题的读者可以查阅许多其他可用资源,例如参考文献中列出的资源。
10.3仪表应符合保护程度IP 51的程度,以防止灰尘,水分和害虫的吸收。10.4仪表应提供透明的扩展端子盖(ETBC)。扩展的端子盖应具有顶部/侧铰链排列,以使其始终保持与仪表的关联。10.5仪表外壳,端子块和ETBC应由牢不可破的,高级,耐火,不易燃料,聚碳酸酯或同等高级和优质的工程塑料制成。端子块应具有终端孔,应具有足够尺寸的最小8.0毫米(直径)以容纳导体,按照第13779- 1999年的IS:6.2和6.4的要求满足要求。10.6将导体固定到端子块的方式应确保足够耐用的接触,以免松动或过热的风险。螺钉连接传输接触力和螺钉固定,在仪表寿命期间可能会松动和拧紧几次,以至于使与任何其他金属零件接触而产生的腐蚀风险被最小化。电连接应如此设计,以至于接触压力不是通过绝缘材料传播的。端子和末端螺钉应由镀金的MS /镍镀铜制成,以提供更好的电导率。清除率和蠕变距离应符合IS 13779:1999的相关条款/CBIP技术报告编号325。
●虽然森林大火自然发生了干扰,这会导致许多森林生态系统的健康和更新(加拿大森林部长委员会2019年),但随着气候的温暖,火灾越来越热,更狂野,造成了更大的破坏。●整个加拿大野火活动越来越频繁(Hanes等人。2018)。2023年燃烧的地区是历史平均水平的六倍以上(加拿大森林森林消防中心2024年)。●气候变化在2023年加拿大东部极端火灾状况的可能性增加了一倍以上(世界天气归因2023)。●过热的气候正在使加拿大夏天更热,更风,降雨量更不稳定,包括一些地区的夏季降雨(Bush and Lemmen 2012; Gifford et al。2022)。●火灾季节开始早些时候,持续更长的时间,并且很难包含(加拿大的气候地图集n.d。;加拿大自然资源2024b;加拿大自然资源2022)。僵尸大火甚至在整个冬季开始闷烧(Shingler 2024)。●随着气候温暖,照明罢工变得更加频繁(McKabe 2023)。2023年在加拿大燃烧的地区的百分之九十三是来自闪电点燃的火灾。人口统计只有7%(Jain等人2024)。●升高的野火风险意味着,无论出于何种原因,开火,传播并更容易失控。
安全数据表ID#SDS-1607发行日期:2015年6月1日修订日期:2022年11月8日修订号003第1节:识别产品标识符:Semitron®ESD480/490HR PEEK制造商:Mitsubishi Chemical Advanced Materade,Inc。2120 Fairmont Ave. Reading,PA 19605(610)320-6600在紧急情况下,请致电Chemtrec Chemtrec 1-800-424-93300。推荐使用:工程热塑性库存形状第2节:危害识别GHS - 分类分类:无信号词:无象形图和符号:无危险语句:无预防性陈述:无预防性说明:无构图/第3节:成分的组成/信息,这是一种聚合物材料。所有成分都封装在聚合物系统中,因此在正常处理和处理条件下,暴露的可能性很小。第4节:急救量的眼睛:至少15分钟用充足的水冲洗。如果继续刺激,请寻求医疗关怀。皮肤:在室温下皮肤接触的健康风险没有。用肥皂和水洗涤。如果熔融材料与皮肤接触,则在流水下冷却。不要尝试从皮肤上去除熔融材料。立即接受医疗护理。吸入:如果吸入过热的烟气,请移至新鲜空气。如果发生呼吸道症状或呼吸困难,请寻求医疗护理。
强制对流沸腾是一种有效的冷却技术,用于热载应用中的温度管理。由于对计算能力的不断增长的需求,微电子的快速发展在科学家和工程师面前设定了有效的微处理器的有效温度控制的任务[1,2]。此类应用的三维集成微处理器中的体积热通量已经达到10 kW/m 3 [2],并且此类处理器中的热通量分布可能非常不平衡。除此之外,已经开发了基于GAN晶体管的新一代电力电子产品,它具有高密度能量转换所需的特征,这将需要密集的冷却,[3]。在通道和微型通道中沸腾的流量已经积极研究[4-5]。例如,在[6]中,研究了具有均匀加热壁的微通道中的纵横比的影响,作者发现该比率对传热系数有很大的影响。在[7]中,研究了硅微通道水槽中的饱和水的饱和水,并研究了微通道的持续液压直径和不同的长宽比。已发现纵横比对传热特征有很大影响。然而,墙壁过热的关键问题,流动的固有不稳定以及在常规连续平行的微通道中的关键热通量值低,为在具有高热量磁通量的设备中实际应用的微通道散热器实际应用带来了严重的问题,[8]。在[9]中,研究了通道高度对传热的影响和具有不均匀加热(流量宽度大于加热器宽度)的平坦微型通道中的临界热通量。然而,尽管加热器与通道宽度之比的影响尚不清楚,尽管它可能对微型和微通道的沸腾传热效率产生重大影响。
*电子邮件:quynh.l.nguyen@colorado.edu暖密度物质(WDM)代表一个高度兴奋的状态,位于固体,等离子体和液体的交叉点上,而平衡理论无法描述。在实验室中创建时,该状态的瞬态性质以及探测电子与离子之间强烈耦合相互作用的困难,使得在该制度中对物质有完整的理解使其具有挑战性。在这项工作中,通过令人兴奋的〜8 nm铜纳米颗粒,其消融阈值以下的飞秒激光器,我们创建了均匀兴奋的WDM。使用光电子光谱法,我们测量瞬时电子温度并提取纳米颗粒的电子耦合,因为它发生了固体到WDM相变。通过与最先进的理论进行比较,我们确认过热的纳米颗粒位于热固体和等离子体之间的边界,并带有相关的强电子离子耦合。这既可以通过对离子的快速能量损失以及对纳米颗粒体积的强声学呼吸模式引起的电子温度的强烈调节来证明这一点。这项工作展示了一种实验探索WDM外来特性的新途径。在几个研究领域的进展取决于对温度和压力的极端条件下对物质的详细理解。“温暖密集物质”(WDM)制度对应于固体附近的密度,温度从〜10 k到〜10,000 K - 一种无法通过平衡理论描述的制度1,2。wdm是高能密度物理学3,融合能量科学4,行星科学5和恒星天体物理学6,7的许多有趣问题的核心。通过激光技术的进步启用,在过去的十年中,在实验室8-17中制造WDM的能力和询问WDM的能力取得了迅速的进步。但是,尽管有这些突破,但准确表征
防止疫苗冷冻是疫苗管理中最大的挑战之一。直到2018年,免疫计划中使用的疫苗载体缺乏防止疫苗冷冻的特征。冻结预防疫苗载体(FPVC)具有工程衬里,可将疫苗直接暴露于冷冻冰袋中缓冲。在尼泊尔东部的24个卫生职位上进行了三个FPVC的领域评估。目的是评估FPVC的性能,可接受性,系统拟合和成本,以告知前期和简介计划。这项研究分为两个阶段:在第一阶段,将含有虚拟疫苗的FPVC(标记为“非用于人类使用”标记)被运送到外展会议上,以及Standard疫苗携带者(SVC)(SVC);在第二阶段;在第二阶段,FPVC用于运输疫苗,用于运输疫苗。这项研究收集了来自FPVC内外的卫生工作者,日志和电子温度监测器的定量和质量数据。的结果表明,FPVC成功地防止了99%以上时间以下的温度,除了在一个地点,环境温度低于世界卫生组织指定的最低评级测试温度。FPVC的内部冷水时间是高度可变的,平均动力学温度也可能是由于环境温度范围广泛和冰箱性能的高度变化所驱动的。2022作者。由Elsevier Ltd.几乎所有卫生工作者都要求较小,重量轻的FPVC,但赞赏FPVCS防止疫苗冻结的能力,同时避免过热的热量暴露。FPVC的利益成本比大于1,因此物有所值。的结果指出,了解预期使用环境以及对Smaller,Shortgrange和Long距离载体的需求的重要性。这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
城市化和全球变暖的结合会导致城市过热,并使由于气候变化而导致的极端热量事件的频率和强度更加复杂。然而,城市绿蓝色灰色基础设施(GBGI)可以减轻城市过热的风险,例如公园,湿地和工程绿化,这有可能有效降低夏季空气温度。尽管进行了许多审查,但有关量化GBGI冷却利益的证据基础仍然部分偏差,实施的实际建议尚不清楚。本系统的文献综述综合了减少热量和相关的共同拟合的证据基础,识别知识差距,并提出了有关其实施的建议,以最大程度地提高其利益。根据10个主要部门分类的51种GBGI类型筛选了27,486篇论文,202篇论文进行了审查。某些GBGI(绿色墙壁,公园,街道树)的城市冷却能力已经进行了很好的研究。但是,其他几个GBGI也获得了微不足道的(动物园,高尔夫球场,河口)或最少的(Private Garden,分配)的关注。在植物园(5.0±3.5 c),湿地(4.9±3.2 c),绿墙(4.1±4.2 c),街道树(3.8±3.1 c)和蔬菜阳台(3.8±2.7 c)中观察到最有效的空气冷却。Under changing climate conditions (2070 – 2100) with consid- eration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb [continental warm-summer humid] to BSk [dry, cold semi-arid] and Cwa [temperate] to Am [热带])。这些转变可能会导致当前GBGI的效率降低。鉴于多种服务的重要性,在计划未来的GBGGI时,在其功能,冷却性能和其他相关的共同配合之间至关重要。这个全局GBGI