DNA聚合酶θ(polθ)是在动物和植物中广泛保守的DNA修复酶。polθ使用短DNA序列同源性通过theta介导的末端连接来启动双链断裂的修复。POLθ的DNA聚合酶结构域位于C末端,并通过中央接头连接到N端DNA解旋酶 - 样域。polθ对于在发育过程中维持受损的基因组维护至关重要,保护DNA免受广泛的缺失,并限制了杂合性的丧失。使用polθ进行基因组保护的成本是,通常在维修部位删除或添加一些核苷酸。polθ的失活通常会增强细胞对DNA链破裂化学物质和辐射的敏感性。由于某些同源重组 - 有缺陷的癌症依赖于Polθ的生长,因此Polθ的抑制剂可能在治疗此类肿瘤中很有用。
这项贡献的主要目标是展示如何在量子信息的语言中重塑许多量子重力形式主义,以及如何在量子量子的结构中,在相同的形式主义中如何看待纠缠或纠缠或量子相关性。即使我们将简要概述的少数结果中,这也不是综述,更不用说对量子重力形式主义中的纠缠和量子信息特征进行的实质性研究。对于后者,我们指的是[1,2],必须限于在量子重力上下文中获得的结果,更接近我们的重点。我们发现采用方便的观点是为了欣赏量子信息理论结构在这些量子重力形式主义中的作用,是新兴的时空,即是量子重力作为“时空成分”的理论,其时空本身,地理位置和领域是新兴实体[3,4,5,6,7]。This perspective is motivated by several results in semiclassical physics, for example black hole thermodynamics and the information paradox, gravitational singularities, that all point in various ways to a breakdown of key notions on which standard continuum, geometric physics is based, and, more indirectly, the results of analogue gravity in condensed matter systems, showing how effective field theory on curved backgrounds can emerge rather generically from non-gravitational系统。这也是由现代量子重力方法的结果,包括我们在这项贡献中关注的方法的动机,并以
摘要背景:肥胖流行是一个日益增长的公共健康问题,使体重管理成为整体健康和福祉的关键方面。的确,促进行为改变的有效工具对于在管理体重方面取得长期成功至关重要。这项研究旨在通过评估心理准备的特定方面,包括动机,自我调节,情感重新评估(EMR)(EMR)和环境重组(ENR)(ENR)(ENR)来验证S重量和P重量问卷的FARSI版本,以支持个性化的体重管理。方法:使用自我管理调查表进行了一项横断面研究。该研究包括455名17-65岁的成年人,不包括接受侵入性减肥干预措施的成年人。测量的变量包括EMR,体重后果评估(WCE),体重管理动作(WMA)和ENR,这些变量使用结构化的Likert尺度问卷进行了评估。进行了探索性和验证性因素分析,可通过Cronbach的alpha和类内相关系数(ICC)评估可靠性。统计显着性设置为p <0.05。结果:问卷显示出强烈的有效性和可靠性(KMO = 0.91; Bartlett的测试χ²= 3999.75; P <0.001)。超重和肥胖的参与者在变化过程中得分明显高于正常体重参与者(p <0.001)。结论:经过验证的工具提供了一种基于心理准备的体重管理策略的可靠手段,并可能改善了长期结局。伊朗大四。2025; 28(3):162-170。 doi:10.34172/aim.33513关键字:变更策略,动机,个性化营养,过程,准备就绪,以:Gohari Dezfuli Z,Hasan Rashedi M,Araminejad M,Karimi K,Mansouri ES,Seif Barghi T等。体重管理过程和个体差异:Parsi中P重量和S权重的验证研究。
摘要。量子计算机的威胁是真实的,将需要经典系统和应用程序的显着资源和时间,以准备针对威胁的补救措施。在算法级别,这是两个最受欢迎的公钥加密系统RSA和ECC,使用Shor's算法易于量化加密分析,而Grover的Algorithm的algorithm却削弱了对称键和基于哈希的密码系统。在实施层中了解了较少的知识,在这种情况下,企业,运行和其他考虑因素,例如时间,资源,专有技术和成本可以影响受威胁的申请的速度,安全性和可用性。,我们对20种众所周知的威胁建模方法进行了景观研究,并在与攻击树和大步互补时识别面食,作为评估现有系统量子计算威胁的最合适方法。然后,我们在通用的网络物理系统(CPS)上进行意大利面威胁建模练习,以证明其效率并报告我们的发现。我们还包括在威胁建模练习中确定的缓解策略,以供CPS所有者采用。
创新与技术部了解,民权和公民自由应该是任何技术部署的中心。该部门使用自动模糊技术作为底特律街景图计划的关键部分。我们不存储个人识别信息。我们使用自动模糊软件来删除任何个人身份识别信息并删除原始数据,以便任何底特律城市或外部实体无法访问它。该技术不是预定的,也不会用于人类观察。
图1(续)新型合并PN轴突侧支的例子。(c)腹侧轴突侧支从同侧的主轴突从背侧的轴突穿过laminaX。(d)越过中线后对侧轴突对侧的侧支分支。(e)显微照片显示了来自面板D的盒子区,那里的侧支分支来自中央运河下方的主轴子。(f)对齐层I的重建与紧凑的略微不对称的轴突,主导细胞的侧面。(g)薄片I与以soma为中心的更稀疏,更对称的轴突。请注意,在这两种情况下(F,G),轴突主要占据laminae I – II。(h)用横向位置的重建,并带有复发轴突,该轴突还填充了DH的内侧方面。(i)显微照片显示背侧跨越较低的侧支,该侧支以垂直的,类似蜡烛的方式从高阶轴突分支。请注意,对于所有对齐的重建,脊髓,灰质和中央运河轮廓都是从包含躯体的部分中取出的;因此,遥远部分中的某些过程似乎可能落在轮廓的边界之外。轮廓的不规则性是由于在组织学过程中发生收缩和扭曲后对截面轮廓的忠实表示。箭头,在ins中的pns/下阶分支中的轴突侧支;箭头,PNS/高级分支中的主轴突;虚线,灰质的边界向背funiculus。比例尺:重建中的250 µm;面板E中的50 µm;面板中100 µm。索马和树突为蓝色,在所有重建中,轴突均为橙色。
细胞外基质蛋白水解在大脑发育过程中保持突触可塑性Haruna Nakajo 1,Ran Cao 1,上cao 1,uspriya A. Mula 1,Justin McKetney 2,3,4,Nicholas J. Silva 1,Muskaan Shah 1,Muskaan Shah 1,Indigo V. L. Indigo V. L. Rose 5,6,Martin Kampmann 5 awane l.2 l.7 swane l.7 6,8,9,10 Anna V.Molofsky 1,10 1精神病学和行为科学系/威尔神经科学研究所,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94158,美国。2 Gladstone数据科学与生物技术研究所,J。DavidGladstone Institutes,旧金山,94158,美国加利福尼亚州,美国3定量生物科学研究所(QBI),加利福尼亚旧金山,旧金山,旧金山大学,加利福尼亚州94158,美国加利福尼亚州94158,美国44158 94158,加利福尼亚,美国5神经退行性疾病研究所,威尔神经科学研究所,加利福尼亚大学,旧金山,旧金山,旧金山,加利福尼亚州94158,美国。6加州大学旧金山分校的Neuroscience研究生课程,美国加利福尼亚州94158,美国。 7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。 8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。6加州大学旧金山分校的Neuroscience研究生课程,美国加利福尼亚州94158,美国。7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。 8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。7加利福尼亚大学旧金山大学生物化学与生物物理学系,旧金山,加利福尼亚州94158,美国。8加州大学旧金山分校的解剖系,美国CA94158,美国。 9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。 10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。 摘要维持动态神经元突触库对于大脑发育至关重要。 小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。8加州大学旧金山分校的解剖系,美国CA94158,美国。9劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利。10卡夫利基本神经科学研究所,加利福尼亚大学,旧金山,旧金山,美国加利福尼亚州94158,美国。摘要维持动态神经元突触库对于大脑发育至关重要。小胶质的MMP14对于鱼类和人类IPSC衍生的培养物中都是必不可少的。细胞外基质(ECM)通过仍在定义并主要在成年期进行研究的机制来调节突触可塑性。使用斑马鱼后脑中兴奋性突触的实时成像,我们观察到短期(动态)和寿命更长(稳定)突触的双峰分布。通过消化或Brevican缺失破坏ECM的动态动态而不是稳定的突触,并导致突触密度降低。相反,基质金属蛋白酶14(MMP14)的丧失导致Brevican的积累并增加了稳定的突触池,从而导致突触密度增加。在运动学习测定中依赖经验的突触可塑性所必需的MMP14和Brevican。通过数学建模补充,这些数据定义了ECM重塑在保持大脑发育过程中突触的动态子集中的重要作用。引言神经元突触数量在大脑发育过程中明显增加,并经历了长时间的经验依赖性精致,以塑造成人大脑功能1。在人类中,前额叶皮质突触在整个幼儿期间增加,随后在青春期进行修剪2,3,突触可塑性的改变与神经发育疾病有关4,5。细胞外基质(ECM)是糖和糖蛋白的晶格,填充了大脑的细胞外空间,最多占脑体积6的20%。ECM也是突触可塑性的关键调节剂7,8。这种观点的许多证据来自于成年后酶消化ECM的研究。这些发现ECM消化可以在9-11的皮质回路中重新打开可塑性,损害学习和记忆12,13,并促进
辅助结构是具有负poisson比率的材料:拉伸时,它们垂直于施加力[26,29],这是看似违反直觉的特性。辅助材料由于其出色的休克吸收,断裂韧性或振动吸收而发现了多个领域的应用[61,51,25,30,49,45]。大量研究致力于设计辅助机械材料[25,12,58],这些材料从其小规模几何形状的特定布置中得出了其物理特性。最近的制造技术可以制造复杂的小规模结构,因此可以制造辅助材料。随机材料具有一些显着的优势。In particular, they are more resilient to fabrication-related symmetry-breaking imperfections [ 44 ], can smoothly and seamlessly grade material properties [ 28 ], are well suited to manufacture isotropic structures [ 40 , 21 ], are excellent candidates for energy-absorbing applications [ 10 , 39 , 23 ], and allow to compute the material geometry efficiently [ 34 ].虽然重复的周期性结构定义了大多数辅助材料,但独特的研究线对随机辅助材料感兴趣[36],因为它们比周期性结构具有某些优势[46,62,27]。辅助聚合物泡沫[29,8]在80年代报道,并广泛用于工业应用中。细胞泡沫的几何形状通常是理想化的,并用Voronoi图[17]进行建模,一些研究辅助泡沫的作品是从建模获得辅助泡沫的最常见过程是压缩一个偶然的透明细胞泡沫,以迫使细胞肋骨扣紧,从而产生一个加热到其软化温度的恢复结构[9,1]。
通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏))通过部署主动脉内移植物的内移植物和/或小动脉(IES)的血管内修复,包括内部内移植物,包括预处理大小和设备的选择,所有非选择性导管(S),所有相关的放射学监督和解释,所有相关的放射性监督和所有相关的主动移植物均放置在主动脉中(s)从肾动脉的水平进行的血管成形术/支架置于叶叶叶。进行破裂,包括临时主动脉和/或iliac气球阻塞(例如,用于动脉瘤,伪动脉瘤,解剖,穿透性溃疡,创伤性破坏)
Smeta是供应商伦理数据交换(SEDEX)开发的一种公认的审计方法。它旨在评估和监视全球供应链中的道德和负责任的业务实践。SMETA审核评估公司运营的各个方面,包括劳工标准,健康与安全,环境影响以及商业道德。审计旨在确保公平而人道的工作条件,遵守当地法律以及遵守国际劳工标准。