A/T 将保持 HOLD 模式,直到满足以下条件之一:• 飞机达到 MCP 目标高度 • 飞行员启动新的 AFDS 俯仰模式或新的 A/T 模式 • A/T 臂开关关闭 • 手动命令推力增加超过推力限制 • A/P 断开,并且两个 F/D 开关都关闭
STAMP 和 STPA 是为软件密集型系统和工程师今天必须处理的日益增加的复杂性、耦合和挑战而设计的。报告的这一部分详细介绍了 STAMP 和 STPA 如何符合或不同于陆军目前使用的主要安全标准。 7. MIL-STD-882E 合规性 STAMP 是被称为系统安全的原则和方法的体现,该系统和方法是在大约 60 年前在国防工业中创建的,旨在应对正在开发的日益复杂的国防系统。STAMP 的创建旨在提供一种实施系统安全基本原则的方法,因此它和基于 STAMP 构建的工具符合并支持 MIL-STD-882 中的任务也就不足为奇了。在本节中,讨论了对 MIL-STD-882E 中每项任务的遵守和支持。任务部分 100 – 程序管理和控制 STPA 有一个结构化的流程来识别危险(如 MIL-STD-882E 中定义),支持
摘要 国际地圈生物圈计划 (rcnr) 呼吁开发改进的全球土地覆盖数据,以用于日益复杂的全球环境模型。为了满足这一需求,美国地质调查局和内布拉斯加州林肯大学的工作人员开发并应用了一种全球土地覆盖特征描述方法,该方法使用 1992-1993 年 1 公里分辨率的先进甚高分辨率辐射计 (fnvunn) 和其他空间数据。该方法基于无监督分类和广泛的分类后细化,产生了一个多层数据库,该数据库由八个手工覆盖数据集、描述性属性和源数据组成。独立的 IGBP 精度评估报告称,全球精度为 zs.s%,各大洲的结果从 63% 到 83% 不等。虽然数据质量、方法、解释器性能和物流都会影响结果,但 AvHnR 数据与复杂自然或受干扰景观中精细尺度、光谱相似的土地覆盖模式之间的关系存在重大问题。
摘要 本文从所有可能的角度研究了向量空间中的线性伊藤随机微分方程。在这种情况下,势向量描述了作用于量子系统的经典噪声的大小。该向量势可以表示为其参数的线性函数,其中厄米算子作为其系数,因为其参数被假定为未知的。对于二阶扰动,可以借助势扰动参数确定幺正演化算子。至于第二项,它写成关于布朗运动的双迭代随机积分,而第一项写成伊藤随机积分。在控制量子系统时,来自环境的噪声可能是一个主要障碍;这种技术可以提供帮助。通过学习检测和调节噪声,提高计算机等量子技术的可靠性和实用性。如果势的参数受到噪声的影响,那么它们的可靠性就会降低。我们重点关注特殊情况,即势能是这些参数的线性函数,以厄米算子为系数。为了找到达到 O ( ǫ ) 的幺正演化算子,我们可以将 O ( ǫ ) 项写为关于布朗运动的伊藤随机积分,将 O ( ǫ 2 ) 项写为关于布朗运动的双迭代随机积分。
背景 ................................................................................................................ 4 舰载组件 ................................................................................................................ 4 概述 .............................................................................................................................. 4 性能 .............................................................................................................................. 5 概述 .............................................................................................................................. 5 方位角 ...................................................................................................................... 7 仰角 ...................................................................................................................... 7 附加舰载系统 ...................................................................................................... 9 概述 ...................................................................................................................... 9 战术空中导航 (TACAN) ................................................................................ 9 垂直/短距起飞和着陆光学着陆系统 ............................................................................................................. 12 机载系统 ............................................................................................................. 14 测试飞机 ............................................................................................................. 14 ICLS 接收器-解码器 ............................................................................................. 14 雷达高度计 ................................................................................................ 15 战术空中导航(TACAN) .............................................................................. 15
摘要:风力涡轮机和光伏等可再生能源是环保能源供应的关键。然而,它们不稳定的电力输出对供应安全构成了挑战。因此,具有存储能力的灵活能源系统对于可再生能源的扩展至关重要,因为它们允许存储非需求产生的电力并根据需要重新转换和供应。为此,提出了一种新颖的发电厂概念,其中高温储能 (HTES) 集成在传统微型燃气轮机 (MGT) 的回热器和燃烧器之间。它用于在供应过剩时存储可再生能源,随后用于减少 MGT 运行期间的燃料需求。因此,污染物排放显著减少,同时电网稳定。本文提出了一项数值过程模拟研究,旨在研究 HTES 的不同存储温度和负载曲线对 MGT 性能(例如燃料消耗、效率)的影响。此外,还推导出相关操作点及其工艺参数,如压力、温度和质量流速。由于燃烧室的运行条件受 HTES 的强烈影响,本文对其对燃烧室可操作性的影响进行了详细的理论分析,并对第一个适合该化合物的燃烧室设计进行了实验研究,并在较高的入口温度条件下进行了测试。
过程分析为了解化学生产过程提供了一个窗口,其结果是直接测量化学参数,以优化和增强过程单元的压力、温度、流量和粘度的标准物理数据。过程分析始于将样品持续提供给分析仪进行分析的要求,并以将有效的分析数据成功传送到分布式控制系统 (DCS) 或其他监控系统而结束。用于样品处理、调节、分析和报告的技术不断发展,可靠性不断提高。可靠性是过程分析的一个关键特性,它与样品处理系统 (SHS)、过程分析仪和通信链路的稳健性直接相关。
可再生能源在碳中立性的背景下引起了行业和学术界的越来越多的关注。对于风和太阳能,对自然过程的强烈依赖会导致能源生产和实际需求之间的不平衡。储能技术,例如压缩空气储能(CAES)是有望增加可再生能源渗透的解决方案。但是,CAES系统是一种多组分结构,在该过程中涉及多种能量形式,但受高温和高压工作条件的影响。CAES系统是一个复杂的流程表,由充电和放电过程组成。应优化该过程,以实现每种形式的最佳热力学和经济性。在最佳设计条件下,一旦发生故障,例如对人类,环境和资产的伤害,可能会导致严重的后果。有限的关注和稀缺信息已向CAES系统风险管理支付。因此,本文应用了系统理论过程分析(STPA),这是一种基于系统理论的自上而下的方法,以识别CAES系统安全危害。结果有望为从业人员提供有关CAES系统安全性和可靠性的初步指南。因此,更可靠的CAES系统可以促进更灵活的能源系统,并使用更有效,更经济的可再生能源利用。