16:40 - 17:00:Codex基于风险的指标的重要性(例如 微生物标准)和此类指标的创新,韦恩·安德森(爱尔兰)16:40 - 17:00:Codex基于风险的指标的重要性(例如微生物标准)和此类指标的创新,韦恩·安德森(爱尔兰)
4.4 第二次调查 ............................................................................................................. 36 4.4.1 人口统计 ...................................................................................................... 37 4.4.2 实施 SPC 时的潜在障碍 ........................................................................ 41 4.4.3 好处 ............................................................................................................. 42 4.4.4 知识 ............................................................................................................. 44 4.4.5 培训 ............................................................................................................. 49 4.4.6 文化/领导力 ............................................................................................. 51
三种不同的系统方法决定了空间变量施肥移动施肥系统中的过程控制。它们是“测绘系统”(“测绘方法”)、实时传感器-执行器系统(“传感器方法”)或两者的结合(“带地图叠加的实时方法”)。测绘方法和传感器方法根据系统而各有缺点,但“带地图叠加的实时方法”可以克服两者的缺点。原则上,这种方法的基本思想是引导过程或系统(这里是植物及其周围环境)达到生态和经济最优。这需要有关过程当前状态及其输入的信息,即“精准农业地图”和在线传感器技术过程数据。对过程进行干预的可能性是施肥。因此,应用设定点由专家知识和手头的输入信息得出。文档记录完成了该过程。
1) Y. Kakinuma 等人:使用 La 掺杂 CeO 2 浆料对光学玻璃镜片进行超精密磨削,CIRP Annals,68,1 (2019) 345-348。2) S. Fujii 等人:全精密加工制造超高 Q 值晶体光学微谐振器,Optica,7,6 (2020) 694-701。3) T. Kuriya 等人:Inconel 718 定向能量沉积的凝固时间和孔隙率之间的关系先进制造技术特刊,JAMDSM,12,5 (2018) JAMDSM0104。4) M. Ueda 等人:用于快速制造的 DED(定向能量沉积)的智能工艺规划和控制,JAMDSM,14, 1 (2020) JAMSDSM0015。5) S. Sakata 等人:通过基于观察者的切削力估算避免不等齿距角平行车削中的颤动,制造科学与工程杂志 140,4 (2018) 044501。6) S. Kato 等人:利用新结构材料的节能机床的热位移和节能性能评估,日本机械工程师学会期刊,(2020 年)。 doi.org/10. 1299/transjsme.20-00002 7) K. Itoh 等人:通过 EHD 图案化开发电粘附微柱阵列,智能材料和结构,28(2019)034003。
2.1 SPC 在工业领域的健康发展 ...................................................................................... 6 2.2 在航空业的实施 .............................................................................................. 9 2.2.1 OEM .............................................................................................................. 9 2.2.2 供应基地 .............................................................................................................. 11 2.3 成功实施 ............................................................................................................. 11 2.4 失败实施 ............................................................................................................. 13 2.5 SPC 实施的成功因素 ............................................................................................. 13 2.6 SPC 实施框架 ............................................................................................. 18 2.6.1 培训 ............................................................................................................. 20 2.6.2 领导力与文化 ............................................................................................. 22 2.7 人为因素与 SPC ............................................................................................. 24 2.8 SPC 软件 ............................................................................................................. 26 2.9 SPC 的好处 ............................................................................................................. 27
DT400 是一款具有数字通信功能的 WirelessHART™ 密度变送器,专为工业过程中直接连续在线测量液体密度而设计。DT400 WirelessHART™ 由一个探头和两个浸入工艺中的中继器隔膜组成。位于探头中、两个中继器隔膜之间的温度传感器可自动补偿工艺过程中的温度变化。探头和温度传感器的生产和组装采用特殊技术,确保工艺温度的微小变化能够快速通知变送器,变送器通过专用软件准确计算流体密度。根据工业过程,密度可以用密度、相对密度、°Brix、°Bé、°INPM、°GL、°API、%固体和 %浓度来表示。在本地,通过 HART® 配置器,可以执行校准、监控和检查诊断。
DT400 是一款具有数字通信功能的 WirelessHART™ 密度变送器,专为在工业过程中直接连续在线测量液体密度而设计。DT400 WirelessHART™ 由一个浸入过程中的带有两个中继器隔膜的探头组成。探头中两个中继器隔膜之间的温度传感器可自动补偿过程中的温度变化。探头和温度传感器的生产和组装采用特殊技术,可确保将过程温度的微小变化快速通知变送器,变送器通过专用软件准确计算流体密度。根据工业过程,密度可以用密度、相对密度、°Brix、°Bé、°INPM、°GL、°API、%固体和 %浓度来表示。通过 HART® 配置器,可以在本地执行校准、监控和检查诊断。