我们研究了在锤子图上定义的自由屈服模型的基础状态下的多部分信息和纠缠措施。使用邻接矩阵的已知对角线化,我们解决了模型并构建了基态相关矩阵。此外,当子系统由嵌入在较大较大的n个分离的子系统组成时,我们发现切碎相关矩阵的所有特征值。这些结果允许我们找到一个确切的公式,用于隔离图的纠缠熵以及相互和三方信息。我们使用这些措施的确切公式在两个不同的热力学限制中提取其渐近行为,并与数值计算相匹配。尤其是,我们发现纠缠熵承认对数违反该地区法的行为减少了与区域法规模相比的纠缠数量。©2023作者。由Elsevier B.V.这是CC根据许可证(http:// creativecommons .org /licenses /by /by /4 .0 /)的开放访问文章。由SCOAP 3资助。
摘要 本文从所有可能的角度研究了向量空间中的线性伊藤随机微分方程。在这种情况下,势向量描述了作用于量子系统的经典噪声的大小。该向量势可以表示为其参数的线性函数,其中厄米算子作为其系数,因为其参数被假定为未知的。对于二阶扰动,可以借助势扰动参数确定幺正演化算子。至于第二项,它写成关于布朗运动的双迭代随机积分,而第一项写成伊藤随机积分。在控制量子系统时,来自环境的噪声可能是一个主要障碍;这种技术可以提供帮助。通过学习检测和调节噪声,提高计算机等量子技术的可靠性和实用性。如果势的参数受到噪声的影响,那么它们的可靠性就会降低。我们重点关注特殊情况,即势能是这些参数的线性函数,以厄米算子为系数。为了找到达到 O ( ǫ ) 的幺正演化算子,我们可以将 O ( ǫ ) 项写为关于布朗运动的伊藤随机积分,将 O ( ǫ 2 ) 项写为关于布朗运动的双迭代随机积分。
1 Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America, 3 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America, 4 Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States of美国,美国密歇根大学医学院5人类遗传学系,美国密歇根州安阿伯市,美国,美国6号神经生物学系,杜克大学医学中心,北卡罗来纳州达勒姆大学医学中心,美国,美国北卡罗来纳州7号,杜克大学生物医学工程系美国,美国密歇根大学医学院精神病学系9
缉毒局印第安纳波利斯办事处助理特工迈克·甘农 (Mike Gannon) 表示,烟火于 2022 年首次出现在科罗拉多州。到去年年底,它已经进入印第安纳州。今年 3 月,两名韦斯特菲尔德青少年因烟火过量而中毒。甘农表示,青少年更有可能通过在线渠道或社交媒体购买含有烟火的药物。他建议父母和监护人利用缉毒局的资源,与孩子讨论市场上新合成的“类似”阿片类药物的危害。如果您怀疑烟火过量,请立即拨打 911 并立即注射纳洛酮。
摘要简介:在主动脉狭窄(AS)中,心脏从适应性补偿到心肌病的心脏转变,并最终导致心力衰竭的代表性。需要更好地了解基础的病理生理机制,以便为防止代偿性策略提供信息。涵盖的领域:在本综述中,我们旨在评估AS适应性和适应不良过程的地位,在AVR之前或之后,在AS的适应性和适应不良过程的地位下,评估辅助治疗的潜在途径,并强调AVR后心力衰竭管理的进一步研究领域。专家意见:针对干预时间的量身定制的策略,即个人患者对后负荷侮辱的反应,并承诺将来指导更好的管理。需要在干预之前对辅助药理和装置治疗进行进一步的临床试验,或者需要在干预之前促进反向重塑和恢复,以减轻心力衰竭和过量死亡的风险。
• 在本合作协议生效的五年内,各管辖区将:• 总体上减少非致命和致命药物过量,特别是在受影响严重和服务不足的人群中,主要关注涉及阿片类药物和/或兴奋剂的过量,包括多种药物的使用。• 通过缩小获得护理和服务的差距,减少与过量相关的健康不平等。• 整合减少伤害的战略和原则。• 改善与服务、护理、治疗和康复的联系以及重新参与和保留,重点关注阿片类药物使用障碍 (OUD) 和兴奋剂使用障碍 (StUD)。• 改进与指南一致的护理以及临床医生和卫生系统的最佳实践• 建立过量监测基础设施。• 跟踪和应对新出现的药物威胁。• 跟踪护理的联系和保留。
最近的研究表明,使用非经典光状态(例如纠缠光子对)可能会为实验性双光子吸收光谱开辟新的令人兴奋的途径。尽管对纠缠双光子吸收 (eTPA) 进行了几项实验研究,但关于 eTPA 是否真正被观察到仍然存在激烈的争论。这场有趣的争论之所以出现,主要是因为最近有人认为单光子损耗机制(例如散射或热带吸收)可能模仿预期的纠缠光子线性吸收行为。在这项工作中,我们专注于 eTPA 的透射测量,并在评估 eTPA 的背景下探索了三种不同的双光子量子干涉仪。我们证明所谓的 N00N 状态配置是唯一一种被认为对线性(单光子)损耗不敏感的配置。值得注意的是,我们的结果表明,N00N 状态可能成为量子光谱学的潜在强大工具,使其成为任意样本中 eTPA 认证的有力候选者。
摘要:计算机网络由数百万个节点组成,由于这些节点持续受到攻击,因此需要持续保护。如果量子计算机普及,保护此类网络的传统安全方法将不够有效。另一方面,我们可以利用量子计算和通信的能力来构建新的量子通信网络。在本文中,我们专注于提高经典客户端-服务器互联网应用程序的性能。为此,我们引入了一种新型物联网 (IoT) 量子网络,与传统物联网网络相比,它提供了更高的安全性和服务质量 (QoS)。这可以通过向传统物联网网络添加量子组件来实现。使用量子对应节点、通道和服务器。为了在量子节点和量子服务器之间建立安全通信,我们为建议的物联网量子网络定义了一个新的通信程序 (CP)。目前可用的量子计算机的量子比特大小较小(从 50 到 433 个量子比特)。拟议的物联网量子网络使我们能够通过连接多个量子节点(量子处理器)的计算工作来克服这个问题。
摘要。基于晶格的密码学是量词后加密的领先建议之一。最短的向量问题(SVP)可以说是基于晶格的密码学的加密分析最重要的问题,许多基于晶格的方案都具有基于其硬度的安全性主张。SVP的最佳量子算法是由于Laarhoven [LAA16]引起的,并且在(启发式)时间2 0中运行。2653 D + O(D)。 在本文中,我们对Laarhoven的结果进行了改进,并提出了一种(启发式)运行时间为2 0的算法。 2570 D + O(d)其中d是晶格尺寸。 我们还提出了时间内存交易,其中我们量化了算法的量子存储器和量子随机访问存储器的量。 核心思想是通过量子随机步行替换[LAA16]中使用的[LAA16]中使用的Grover的算法。2653 D + O(D)。在本文中,我们对Laarhoven的结果进行了改进,并提出了一种(启发式)运行时间为2 0的算法。2570 D + O(d)其中d是晶格尺寸。我们还提出了时间内存交易,其中我们量化了算法的量子存储器和量子随机访问存储器的量。核心思想是通过量子随机步行替换[LAA16]中使用的[LAA16]中使用的Grover的算法。
摘要:如果节点缺少它们共享的纠缠铃对中的信息,则量子网络节点之间共享的任意数量的纠缠可能是不可证实的。使这样的系统可蒸馏(称为绑定纠缠(BE)的超激活)被证明是通过节点之间的系统量子传送,需要用节点数量来实现受控的gates缩放。在这项工作中,我们在两种情况下表明,如果节点仅基于单个量子旋转和简单的阈值测量值实施了提出的局部量子Zeno策略,则可能会产生超级激活。在我们考虑的第一种情况下,我们像原始的超级激活建议一样,获得了一个两分的可蒸馏纠缠系统。在第二种情况下,我们表明可以在五个节点中的八个量子位网络中实现超激活。除了获得全粒子可蒸馏的纠缠外,还增加了系统的总体纠缠,而两部分切割的总和也增加了。我们还设计了一种具有可变贪婪的一般算法,以优化QZD演化任务。在第二种情况下实施我们的算法,我们表明可以通过将初始BE系统驱动到最大的纠结状态来获得显着的改进。我们认为,我们的工作从实践和基本观点中都促进了量子技术,从而弥合了非局部性,绑定的纠缠以及量子Zeno的动力学之间的量子技术。