在大多数情况下,上面讨论的影响是可以补偿的,而且根据飞机的不同,许多影响已经得到补偿。但应注意,每项修正都有其固有的不确定性,如果输入数据不正确,也会导致错误读数。在“保持简单”的理念中,对其他数据的依赖越少,AOA 系统就越强大。例如,马赫数会影响传感器校准。虽然这种关系可以得到补偿,但这会使传感器输出依赖于良好的马赫数信息。如果空速数据不准确,计算出的马赫数以及校准的 AOA 读数将不正确。这将在空速系统发生故障时影响 AOA 的实用性。请注意,由于
尝试瞄准并射击飞行良好的米格 21!Predrag Pavlovic,文凭。和 Nenad Pavlovic,文凭,JAT 航空公司 现代战斗机的机动性是通过其飞行速度以及可以维持多大的迎角并仍然转弯来衡量的。在某些战争情况下,美国评估和侵略者使用,米格 21 已表明它可以跟上这一领域的现代飞机。飞机制造商一度认为这无关紧要,并对迎角施加限制。在低速下以超过允许的 28-33 度局部迎角飞行可以相对安全地实现曾经被认为是现代战斗机特权的机动性。几年前,媒体上出现了关于 1973 年以色列-阿拉伯战争期间一场混战的报道和证词。当时埃及米格 21 飞行员在 3000 英尺的起始高度成功完成 Split-S 机动,不到手册规定的最低空域的一半(约 6750 英尺)。可以在互联网上找到适当的模拟:http://www.youtube.com/watch?v=bQMzK2WfYYM&feature=player_embedded
屏幕上的元素 ................................................. 6 地平线、俯仰和滚转指示器 ........................ 7 稳定航向带 .............................................. 7 高度数字读数 .............................................. 7 高度带 .............................................................. 7 迎角 (AOA) 带 .............................................. 8 空速数字读数 .............................................. 8 空速带 .............................................................. 8 错误显示 .............................................................. 9 转弯协调器 ...................................................... 9 时钟/计时器 ...................................................... 9 菜单系统和用户交互 ............................................. 10
摘要 — 本文讨论了滑行道入口处机组驾驶技术质量评估问题。考虑到飞机控制指挥模式中的人为因素,明确了滑行道入口的边界。进入滑行道时,不仅要考虑动作的准确性,还要考虑飞机的空速。考虑了空速或迎角测量系统发生故障时收到警告的问题。开发的警告系统基于对飞行参数相关场的分析。在某些情况下,机组人员没有保持正确的飞行参数,而是不成比例地增加迎角,导致螺旋形飞行,或使飞机急剧俯冲并进一步与地面相撞。因此,有必要在进入滑行道之前评估机组驾驶技术的质量。当绕圈飞行时,这是从第四次掉头结束到着陆。机组人员的不正确操作与其紧张状态有关。还提供了一种系统,用于确定在人类操作员受到负面因素影响的情况下飞行技术质量的下降。该系统基于自相关函数的分析。索引术语——飞行路径;下滑道;人为因素;参数幅度。
外环控制因素是影响飞行员在最后进近期间手动调节下滑道、迎角和队列的能力的因素。本报告集中讨论前两个因素,即下滑道和迎角。目标是确定确保有效外环控制的关键属性,然后检查现有设计要求如何很好地解决这些属性。飞行品质和性能要求的组合适用于此领域,包括 MIL-F-8785C、MIL-STD-1797A 和海军的进近速度标准。首先,报告回顾了该主题的历史背景,讨论了技术方法,并预览了要应用的分析工具。其次,它给出了外环控制的状态,包括对航母着陆任务的描述、现有飞机特性以及一些描述飞行中模拟航母进近的数据。接下来的描述包含任务、飞机和飞行员的数学模型组件。报告的主要部分介绍了一系列有助于确定关键外环控制特性的分析。最后一部分给出了实施结果的结论和建议。技术方法适用
轴 a x 重心沿 x B 轴的“局部”(非重力)加速度分量 a z 重心沿 z B 轴的“局部”(非重力)加速度分量 n x 沿 x B 轴的载荷系数,等于 a x /g n z 沿 z B 轴的载荷系数,等于 a z /g g 级 评估局部加速度大小的指数 ¯ c 平均气动弦长 S 机翼面积 AR 展弦比 e 奥斯瓦尔德效率因子 C L 升力系数 C L 0 零迎角时的升力系数 C L α 由于迎角导致的升力系数变化 C L q 由于俯仰速度导致的升力系数变化 C L δe 由于升降舵导致的升力系数变化 C D 阻力系数 C D 0 零升力阻力系数 C D i 诱导阻力系数 C m 俯仰力矩系数 C m 0 零升力俯仰力矩系数 C m α 由于迎角导致的俯仰力矩系数变化
• 据媒体报道,波音 737 Max 问题的一个根本原因是分区方法。据分析师称,最初的 MCAS 飞机机动系统依靠来自多个传感器的数据来测量飞机加速度和迎风角度等参数。这确实确保了软件不会出现错误。但在升级后的系统中,为了避免在各种情况下失速,MCAS 被允许通过向下推机头来控制飞行俯仰。但只使用了一个飞机迎角传感器的数据,消除了之前的补偿冗余。在设计和测试新系统时,从系统角度来看,需要在多种情况下测试 MCAS 以识别故障模式。
图 3.29:升降舵偏转信号 ...................................................................................................... 37 图 3.30:方向舵偏转信号 ...................................................................................................... 37 图 3.31:沿 X 方向的速度 B(“u”) ............................................................................................. 38 图 3.32:沿 Y 方向的速度 B(“v”) ............................................................................................. 38 图 3.33:沿 Z 方向的速度 B(“w”) ............................................................................................. 38 图 3.34:滚转速率(“p”) ............................................................................................................. 39 图 3.35:俯仰速率(“q”) ............................................................................................................. 39 图 3.36:偏航速率(“r”) ............................................................................................................. 39 图 3.37:滚转角度(“Phi”) ............................................................................................................. 40 图 3.38:俯仰角度(“Theta”) ........................................................................................... 40 图 3.39:偏航角(“Psi”)................................................................................................... 40 图 3.40:迎角
与此同时,机长 (PNF) 进行了与 PF 相反的机头下沉输入和滚转输入。这些同时进行的输入降低了 PF 的倾斜输入,并再次增加了俯仰姿态、载荷系数和攻角。这些同时进行的输入触发了“双重输入”警报。PF 表示,因此他要求 PNF 停止在侧杆上进行输入。他还通过按下侧杆上的相应按钮六秒钟来接管控制的优先权。PF 将倾斜角保持在向右 40 到 80 度约二十秒。在达到 42 度机头上仰后,俯仰姿态逐渐降低到 10 度。迎角和载荷系数迅速下降,分别从 22 度降至 5 度,从 4.5g 降至 1.25 至 1.5g 之间。同时,校准空速从 300 kt 降至 150 kt。
与此同时,机长 (PNF) 进行了与 PF 相反的机头下沉输入和滚转输入。这些同时进行的输入降低了 PF 的倾斜输入,并再次增加了俯仰姿态、载荷系数和攻角。这些同时进行的输入触发了“双重输入”警报。PF 表示,因此他要求 PNF 停止在侧杆上进行输入。他还通过按下侧杆上的相应按钮六秒钟来接管控制的优先权。PF 将倾斜角保持在向右 40 到 80 度,持续了大约二十秒。在达到 42 度机头上仰后,俯仰姿态逐渐降低到 10 度。迎角和载荷系数迅速下降,分别从 22 度降至 5 度,从 4.5g 降至 1.25 至 1.5g 之间。同时,校准空速从 300 kt 降至 150 kt。