建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
•风力涡轮机能够定向面对迎面而来的风。•当空气穿过时,叶片旋转。•这些连接到连接到涡轮机的轴上。•单个风力涡轮机每年可以产生1-7兆瓦的能源,而对于大量人群来说还不够。•风电场是大量的风力涡轮机聚集在一起。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)下高度的函数,以及原始建筑形状的压力系数或形状因子,这些可能是通过参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确负载的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的负载低得多的负载。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,已证明单个孤立的附近建筑物会使顺风结构的负载增加一个倍数
1 引言 车对车追尾碰撞是道路上最常见的事故之一,主要由于驾驶员分心或判断失误。城市驾驶中,典型的追尾碰撞通常发生在车速相对较低、受撞击车辆已处于静止状态的情况下,但被撞击车辆驾驶员遭受严重颈椎扭伤的风险很高。虽然受伤程度通常较低,但这类事故非常常见,占所有碰撞事故的四分之一以上。类似的事故场景也发生在中高速行驶的开放道路上,驾驶员可能会分心,无法意识到前方车辆已停止、即将停止或以较低的速度行驶。其他常见的碰撞类型包括在路口行驶时与迎面而来的或穿过的车辆碰撞,以及偏离车道时与迎面而来的车辆碰撞。道路布局的复杂性以及安全穿越其他车辆所需的感知、判断和动态操控能力,都对驾驶员提出了挑战。为了帮助驾驶员避免这些常见的碰撞类型,汽车制造商提供了避碰技术,可以发出警告、支持充分制动并/或最终自动停止车辆。该协议规定了旨在应对这些常见碰撞类型的 AEB 车对车测试程序,这些程序是安全辅助评估的一部分。要获得 AEB 车对车测试的分数,前排座椅必须获得良好的鞭打评分。该系统将在该协议详述的七个场景中进行测试。
此外,还默认配备驾驶员、乘客、侧面和驾驶员膝部安全气囊,XR 和 GR-Sport 车型还配备了附加侧气帘。安全也可以很智能;因此,每辆 Corolla Cross 都可以用车主口袋中的钥匙扣解锁和锁定,并可通过按钮启动。同样,前后安全带警告现在可自动检测后排乘客,其中还安装了两个汽车座椅的 ISOFIX 固定点。除了上述安全功能外,XR 和 GR-Sport 车型还通过安装丰田 Safety Sense™ 系统将主动防撞功能提升到一个新的水平,该系统由一个预碰撞系统组成,该系统可检测迎面而来的车辆或行人,并通过视听警告提示驾驶员采取规避措施。如果后者未能及时发生,车辆的制动器可能会自动应用。
D 交通控制计划“D”包括在主要交叉路口安装交通控制措施。这将允许车辆利用专用车道(例如双向左转车道)从峡谷或侧路进入 PCH。实施该计划不需要利用警察交通信号开关来改变峡谷或侧路的优先绿灯时间。这种方法将要求警官采取现场交通控制措施,暂时阻止 PCH 上的迎面而来的车辆。如果 LASD 确定峡谷或侧路上的交通已开始堵塞,则将实施此交通控制计划。已经为每个主要交叉路口制定了单独的交通控制计划,以指导交通控制措施的安装。将在交叉路口附近放置一批交通控制设备以供部署。负责机构 – LASD、CHP、圣莫尼卡警察局和 VSO