摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
结果:端口在整个队列中没有显着提高生存率,在SEER队列中,中位总生存期为38个月(p = 0.56),中国人群中的39个月(p = 0.75)。然而,在免疫疗法亚组中,中国队列表明,免疫疗法与港口的生存率显着改善(p = 0.044)。多数COX回归分析表明,患者50-59岁的患者(HR = 5.93,95%CI:1.67-21.06)和95%(95%),95%(HR CI:3.04-39.56)与年龄<50岁的患者相比,生存风险增加。此外,YPT3-4阶段患者的风险比YPT1-2阶段的患者更高(HR = 2.12,95%CI:1.14-3.93,P = 0.017)。在CT3-4分期中,观察到类似的趋势,R1/R2和无免疫疗法。淋巴结转移也显示出与生存风险的进行性关系,患者分类为YPN1(HR = 1.90),
我们专注于一项非常具有挑战性的任务:在夜间动态场景时进行成像。大多数以前的方法都依赖于常规RGB摄像机的低光增强。,他们不可避免地会在夜间长时间的长时间和动作场景的动作模糊之间面临困境。事件摄像机对动态变化的反应,其时间分辨率较高(微秒)和较高的动态范围(120dB),提供了替代解决方案。在这项工作中,我们使用活动摄像头提出了一种新颖的夜间动态成像方法。具体来说,我们发现夜间的事件表现出时间段落的特征和空间非平稳分布。conse-我们提出了一个夜间活动重建网络(NER-NET),主要包括可学习的事件时间戳校准模块(LETC),以使临时尾随事件和非均匀照明式落后事件保持一致,以稳定事件的spatiotalmorporal分布。此外,我们通过同轴成像系统构建了配对的真实低光事件数据集(RLED),这包括空间和时间对齐的图像GTS和低光事件的64,200个。广泛的实验表明,在视觉质量和泛化能力方面,所提出的方法优于最先进的方法。
由于其广泛的应用范围,从文本描述中产生人类动作已引起了越来越多的研究兴趣。但是,只有少数作品将人类场景的互动与文本条件一起考虑,这对于视觉和物理现实主义至关重要。本文提出了在3D门场景中产生人类动作的任务,鉴于人类习惯的文本描述。由于文本,场景和运动的多种形式性质以及对空间推理的需求,此任务提出了挑战。为了应对这些挑战,我们提出了一种新方法,将复杂的概率分解为两个更可管理的子问题:(1)目标对象的语言接地和(2)以对象为中心的信息产生。对于目标对象的语言基础,我们利用大型语言模型的力量。对于运动生成,我们设计了一个以对象为中心的场景代表生成模型,以专注于目标对象,从而降低场景的复杂性并促进人类运动与对象之间关系的建模。实验证明了与基准相比,我们的方法的更好运动质量并验证了我们的设计选择。代码将在链接上可用。
通过视觉引导手部动作进行的计算机交互通常采用抽象的基于光标的反馈或不同程度真实感的虚拟手 (VH) 表示。目前尚不清楚在虚拟现实环境中更改这种视觉反馈的效果。在这项研究中,19 名健康的右撇子成年人使用四种不同类型的视觉反馈执行食指运动(“动作”)和观察运动(“观察”):简单的圆形光标 (CU)、指示手指关节位置的点光 (PL) 图案、阴影卡通手 (SH) 和逼真的 VH。使用数据手套记录手指运动,并以光学方式记录眼动追踪。我们使用功能性磁共振成像 (fMRI) 测量大脑活动。与基线相比,动作和观察条件均显示枕颞皮质中的 fMRI 信号响应更强。动作条件还会引起运动、体感、顶叶和小脑区域的双侧激活增加。对于这两种情况,带有移动手指的手部反馈(SH、VH)比 CU 或 PL 反馈导致更高的激活,特别是在早期视觉区域和枕颞皮质中。我们的结果表明,与视觉不完整的手部和抽象反馈相比,在视觉引导的手指运动过程中,皮质区域网络的募集更强。这些信息可能对研究和应用或训练相关范例中涉及人体部位的视觉引导任务的设计产生影响。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
协作感知允许在多个代理(例如车辆和基础)之间共享信息,以通过交流和融合来获得对环境的全面看法。当前对多机构协作感知系统的研究通常会构成理想的沟通和感知环境,并忽略了现实世界噪声的效果,例如姿势噪声,运动模糊和感知噪声。为了解决这一差距,在本文中,我们提出了一种新颖的运动感知robus-Busban通信网络(MRCNET),可减轻噪声干扰,并实现准确且强大的协作感知。MRCNET由两个主要组成部分组成:多尺度稳健融合(MRF)通过驱动跨语义的多尺度增强的聚集到不同尺度的融合特征,而运动增强机制(MEM)捕获运动上下文,以补偿动作对物体引起的信息,从而解决了姿势噪声。对流行的协作3D对象检测数据集的实验结果表明,在噪声方案中,MRCNET优于使用较少的带宽感知性能的噪声方案。我们的代码将在https://github.com/indigochildren/collaborative-ception-mrcnet上进行重新释放。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
要允许复制或重新出版,请联系美国航空与宇航学院1801 Alexander Bell Drive,Suite 500,Reston,VA,20191–4344