1 伯尔尼大学社会与预防医学研究所,3012 伯尔尼,瑞士;eva.pedersen@ispm.unibe.ch (ESLP);maria.mallet@ispm.unibe.ch (MCM);yin.lam@ispm.unibe.ch (YTL);myrofora.goutaki@ispm.unibe.ch (MG) 2 伯尔尼大学健康科学研究生院,3012 伯尔尼,瑞士 3 意大利 Ciliare Primaria Sindrome di Kartagener Onlus 协会,70124 巴里,意大利;saradcp@virgilio.it 4 ADCP 协会,42218 Saint-Étienne,法国;icizeau@cegetel.net 5 PCD Support UK,伦敦 MK18 9DX,英国; fiona.copeland@stonac.co.uk 6 Asociación Española de Pacientes con Discinesia Ciliar Primaria, Santo Ángel 30151, 菲律宾; asociaciondcpes@gmail.com 7 PCD 基金会,明尼阿波利斯,明尼苏达州 55420,美国; michelemanion@gmail.com 8 原发性纤毛运动障碍中心,NIHR 生物医学研究中心,南安普敦大学医院 NHS 基金会信托,南安普敦 SO16 6YD,英国; Amanda-lea.harris@uhs.nhs.uk (ALH); jlucas1@soton.ac.uk (JSL) 9 南安普顿大学医学院,临床和实验医学学院,南安普顿 SO17 1BJ,英国 10 费德里科二世大学转化医学科学系,80138 那不勒斯,意大利; santamar@unina.it 11 伯尔尼大学医院儿科系儿科呼吸医学和过敏学科,伯尔尼大学医院,伯尔尼大学,3010 瑞士 * 通讯地址:Claudia.kuehni@ispm.unibe.ch;电话:+41-31-684-35-07 † COVID-PCD 患者咨询小组(按字母顺序):Sara Bellu,意大利 Kartagener Onlus 原发性纤毛诊断协会,意大利;Isabelle Cizeau,法国 ADCP 协会;Fiona Copeland,英国 PCD 支持;Katie Dexter,英国 PCD 支持;Lucy Dixon,英国 PCD 支持;Trini L ó pez Fern á ndez,西班牙原发性纤毛诊断协会Susanne Grieder,Selbsthilfegruppe Primäre Ciliäre Dyskinesie,瑞士; Catherine Kruljac,澳大利亚 PCD 原发性纤毛运动障碍,澳大利亚; Michele Manion,PCD 基金会,美国; Bernhard Rindlisbacher,Selbsthilfegruppe Primäre Ciliäre Dyskinesie,瑞士; Hansruedi Silberschmidt,Verein Kartagener Syndrom und Primäre Ciliäre Dyskinesie,德国。
针对Hecolin的三剂重组疫苗自2011年以来已在中国使用许可。由于缺乏对普通民众负担的证据,不建议常规使用,但2015年建议在爆发中考虑疫苗。截至2022年初,疫苗尚未用于爆发环境中。减少的剂量疫苗接种时间表,即使有效,可以使疫苗成为重要的爆发反应工具。响应于2021年底在南苏丹的本内流离失所者的丙型肝炎病例增加,无国界医生和南苏丹的MOH实施了第一次针对乙型肝炎病毒(HEV)的大规模反应性疫苗接种运动。三次疫苗接种巡回赛发生在2022年3月,4月和10月,针对26,848名16-40岁的人,包括孕妇。我们建立了增强的监视,并进行了一项病例对照研究,以估计两剂量疫苗的有效性(VE)。
我们专注于一项非常具有挑战性的任务:在夜间动态场景时进行成像。大多数以前的方法都依赖于常规RGB摄像机的低光增强。,他们不可避免地会在夜间长时间的长时间和动作场景的动作模糊之间面临困境。事件摄像机对动态变化的反应,其时间分辨率较高(微秒)和较高的动态范围(120dB),提供了替代解决方案。在这项工作中,我们使用活动摄像头提出了一种新颖的夜间动态成像方法。具体来说,我们发现夜间的事件表现出时间段落的特征和空间非平稳分布。conse-我们提出了一个夜间活动重建网络(NER-NET),主要包括可学习的事件时间戳校准模块(LETC),以使临时尾随事件和非均匀照明式落后事件保持一致,以稳定事件的spatiotalmorporal分布。此外,我们通过同轴成像系统构建了配对的真实低光事件数据集(RLED),这包括空间和时间对齐的图像GTS和低光事件的64,200个。广泛的实验表明,在视觉质量和泛化能力方面,所提出的方法优于最先进的方法。
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
由于其广泛的应用范围,从文本描述中产生人类动作已引起了越来越多的研究兴趣。但是,只有少数作品将人类场景的互动与文本条件一起考虑,这对于视觉和物理现实主义至关重要。本文提出了在3D门场景中产生人类动作的任务,鉴于人类习惯的文本描述。由于文本,场景和运动的多种形式性质以及对空间推理的需求,此任务提出了挑战。为了应对这些挑战,我们提出了一种新方法,将复杂的概率分解为两个更可管理的子问题:(1)目标对象的语言接地和(2)以对象为中心的信息产生。对于目标对象的语言基础,我们利用大型语言模型的力量。对于运动生成,我们设计了一个以对象为中心的场景代表生成模型,以专注于目标对象,从而降低场景的复杂性并促进人类运动与对象之间关系的建模。实验证明了与基准相比,我们的方法的更好运动质量并验证了我们的设计选择。代码将在链接上可用。
该团队将把他们的 PAM 工具应用于跨越十年的 PMRF 数据集,以研究布氏鲸的发声和提示率,并比较随时间和运动行为状态的提示率。工作将包括手动验证先前在数据集中识别的布氏鲸叫声。分析结果还将与已发布的提示率进行比较,以评估随时间、位置或种群的稳定性。将根据环境变量(例如一年中的时间、季节、风和波浪数据)以及其他情境数据(例如与最近的呼叫布氏鲸的距离)检查轨迹运动学。
1 “Enrico Piaggio”研究中心和 Dipartimento di Ingegneria dell'Informazione,比萨拉戈大学 Lucio Lazzarino 1, 56122 比萨,意大利; 2 用于人类合作与康复的软机器人,Fondazione Istituto Italiano di Tecnologia,Via Morego 30, 16163 Genova,意大利; 3 RSI - 慕尼黑工业大学 (TUM) 慕尼黑机器人与机器智能学院机器人与系统智能主席,Heßstr。 134, 80797 慕尼黑, 德国; 4 MoMiLab 研究中心,IMT 卢卡高级研究学院,Piazza S. Francesco 19, 55100 Lucca, Italy; 5 苏黎世大学神经病学系血管神经病学和神经康复科,Frauenklinikstrasse 26, 8006 苏黎世,瑞士;6 汉诺威医学院矫形外科系生物力学和生物材料实验室 (LBB),L384, 30625 汉诺威,德国;7 苏黎世健康科学与技术系机器人与智能系统研究所康复工程实验室,CLA H 1.1 Tannenstrasse 3, 8092 苏黎世,瑞士
该系统将由图像中所示的多层传感垫组成,其中垫子上的每个正方形都可以检测和分析用户的步骤或运动。该垫子将与解释数据的软件应用程序同步,从而洞悉用户的余额,协调和整体移动性。我们将在早期阶段使用Arduino作为微处理器,但将用最终产品中的自定义PCB替换。硬件嵌入了传感器,将与该软件无线通信,该软件将对个人的运动方案进行自定义。该系统是考虑到在家部署的设计,可以通过与行业合作伙伴的合作来完善,以确保其稳健性和用户友好性。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
协作感知允许在多个代理(例如车辆和基础)之间共享信息,以通过交流和融合来获得对环境的全面看法。当前对多机构协作感知系统的研究通常会构成理想的沟通和感知环境,并忽略了现实世界噪声的效果,例如姿势噪声,运动模糊和感知噪声。为了解决这一差距,在本文中,我们提出了一种新颖的运动感知robus-Busban通信网络(MRCNET),可减轻噪声干扰,并实现准确且强大的协作感知。MRCNET由两个主要组成部分组成:多尺度稳健融合(MRF)通过驱动跨语义的多尺度增强的聚集到不同尺度的融合特征,而运动增强机制(MEM)捕获运动上下文,以补偿动作对物体引起的信息,从而解决了姿势噪声。对流行的协作3D对象检测数据集的实验结果表明,在噪声方案中,MRCNET优于使用较少的带宽感知性能的噪声方案。我们的代码将在https://github.com/indigochildren/collaborative-ception-mrcnet上进行重新释放。
