唐氏综合症(DS)是由人类染色体21(HSA21)的一式字母引起的,代表了智力障碍的最常见基因组原因,在美国,患病率估计为700名活产的患病率估计为1个(Mai等人,2019年; Parker等,2010; Parker等,2010)。Individuals with DS have multiple neurodevelopmental phenotypes, mild to moderate intellectual impairment, neurological deficits, including reduced numbers and size of neurons in the hippocampus, along with systemic peripheral deficits ( Rachidi and Lopes, 2008 ; Chapman and Hesketh, 2000 ; Lott, 2012 ; Wisniewski, 1990 ; Freeburn and Munn, 2021 ; Emili等,2024)。ds导致与海马功能受损相关的记忆缺陷,包括情节和空间记忆的损害(Freeburn and Munn,2021; Chapman and Hesketh,2000; Conternabile等,2017; Das等,2014)。In addition, individuals with DS develop amyloid-beta peptide (A β ) senile plaques, tau-containing neurofibrillary tangles, cortical thinning, and overt brain atrophy over their lifespan ( Chapman and Hesketh, 2000 ; Mann et al., 1984 ; Lott and Head, 2019 ; Wisniewski et al., 1985 ).大多数患有DS的人都记录了渐进的认知障碍,痴呆症现在被描述为成人DS的主要死亡原因(Lott and Head,2019; Landes等,2020)。
摘要:RNA 代谢失调已成为导致肌萎缩侧索硬化症 (ALS) 疾病中运动神经元 (MN) 退化的关键事件之一。事实上,RNA 结合蛋白 (RBP) 或参与 RNA 代谢方面的蛋白质的突变占 ALS 常见形式的大多数。特别是,与 ALS 相关的 RBP FUS 突变对 RNA 相关过程的许多方面的影响已得到广泛研究。FUS 在剪接调控中起着关键作用,其突变严重改变了编码参与神经发生、轴突引导和突触活动的蛋白质的转录本的外显子组成。在本研究中,通过使用体外衍生的人类 MN,我们研究了 P525L FUS 突变对导致环状 RNA (circRNA) 形成的非规范剪接事件的影响。我们观察到 FUS P525L MN 中 circRNA 的水平发生变化,并且突变蛋白优先与下调 circRNA 两侧含有反向 Alu 重复序列的内含子结合。对于一部分 circRNA,FUS P525L 还会影响它们的核/细胞质分配,证实其参与了不同的 RNA 代谢过程。最后,我们评估了细胞质 circRNA 作为 miRNA 海绵的潜力,这可能与 ALS 发病机制有关。
记忆回忆和自愿行为通常被认为是与外部刺激无关的自发产生。尽管它们是我们神经元的产物,但在神经元层面上很少在人类身上出现。在这里,我回顾了从独特的神经外科手术机会中收集到的见解,这些机会记录和刺激了能够表达自己的想法、记忆和愿望的人的单神经元活动。我讨论了人类回忆的主观体验和自愿行为的主观体验来自两个内部神经元发生器的活动的证据,前者来自内侧颞叶再激活,后者来自额顶叶预激活。我描述了这些发生器及其相互作用的特性,从而能够灵活地招募基于记忆的行动选择以及招募基于行动的计划以在记忆中表示概念知识。这两个内部发生器都以令人惊讶的明确但不同的神经元代码运行,这些代码似乎伴随着不同的单神经元活动而出现,通常在参与者报告有意识之前观察到。我讨论了基于这些代码的行为预测及其调节的潜力。通过增强、开始或删除特定的、选定的内容来编辑人类记忆和意志的前景带来了治疗可能性和伦理问题。
图1。关于5-HT2A受体,TRKB受体和神经元形态可塑性关系的四个主要分子假设。A。5HT2A和TRKB受体的分子信号传导。5HT2A受体的激动剂导致GQ介导的PLCβ激活,这通过将PIP2的水解在IP3和DAG分子中引发了2个平行信号级联。IP3诱导Ca 2+释放和CAMK激活,而DAG激活PKC,然后激活ERK激酶,这两个级联反应都会导致基因表达调节。TRKB激活启动了3个主要的平行信号传导级联反应,由PLCγ,ERK和Akt激酶活性和基因调节以及随后的形态变化。可以假设5HT2A活性通过重叠的信号级联(IP3和ERK)(IP3和ERK)或TRKB通过未知途径或BDNF表达和释放而产生类似于TRKB活性的形态变化。迷幻药引起的形态变化的替代假设提出了TRKB受体的直接相互作用和调节。B. BDNF在大鼠胚胎神经元皮质培养物(RTEN)中诱导的TRKB,ERK和AKT磷酸化,从DIV5到Div7。trkb信号在50 ng/ml的BDNF处理后至少48h时可在AKT和ERK信号分子上测量。数据代表来自不同实验板的平均值±95%CI,双向方差分析,Dunnet与车辆响应的多重比较,**** p <0.0001,n = 4。
记忆回忆和自愿行为通常被认为是与外部刺激无关的自发产生。尽管它们是我们神经元的产物,但在神经元层面上很少在人类身上出现。在这里,我回顾了从独特的神经外科手术机会中收集到的见解,这些机会记录和刺激了能够表达自己的想法、记忆和愿望的人的单神经元活动。我讨论了人类回忆的主观体验和自愿行为的主观体验来自两个内部神经元发生器的活动的证据,前者来自内侧颞叶再激活,后者来自额顶叶预激活。我描述了这些发生器及其相互作用的特性,从而能够灵活地招募基于记忆的行动选择以及招募基于行动的计划以在记忆中表示概念知识。这两个内部发生器都以令人惊讶的明确但不同的神经元代码运行,这些代码似乎伴随着不同的单神经元活动而出现,通常在参与者报告有意识之前观察到。我讨论了基于这些代码的行为预测及其调节的潜力。通过增强、开始或删除特定的、选定的内容来编辑人类记忆和意志的前景带来了治疗可能性和伦理问题。
轴突非常复杂,分布广泛,可以形成细小的分支,通过动作电位传输信号。• 轴突的长度可以从微米到米不等,并且可以遍布整个大脑。• 轴突的分支模式不同,因为分支模式与树突相比变化更大。• 细胞轴突的密度和分布可以跨大脑区域和大脑区域内变化,具体取决于细胞类型。例如,在人类和小鼠的视觉皮层中,相同细胞类型的轴突会因胞体位于皮层的哪个皮层层而有很大差异。皮层层是大脑外皮层的不同层,从第 1 层(浅层)到第 6 层(深层)排列。• 轴突可以包裹在髓鞘中,髓鞘就像电线上的绝缘层。这可以提高动作电位的速度。在大脑区域之间移动的轴突通常有髓鞘,可能会提高信号传输的速度和可靠性。 • 下图是同一个人类神经元,但标出了轴突。请注意,与树突相比,轴突要细得多。
典型的肌肉由数千条并行工作的肌纤维组成,这些肌纤维被组织成较少数量的运动单位。运动单位由运动神经元及其所支配的肌纤维组成,这里用运动神经元 A1 表示。支配一块肌肉的运动神经元通常聚集在一个细长的运动核中,该运动核可能延伸到脊髓腹侧的一到四个节段。运动核的轴突通过几条腹根和周围神经离开脊髓,但被收集到靠近目标肌肉的一个神经束中。在图中,运动核 A 包括支配肌肉 A 的所有运动神经元;同样,运动核 B 包括支配肌肉 B 的所有运动神经元。每个运动神经元(图中未显示)的广泛分支的树突往往与来自其他核的运动神经元的树突混合在一起。