实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
事件相关去同步 (ERD) 是在运动执行和运动想象过程中在感觉运动区域观察到的脑电图 (EEG) 频谱功率的相对衰减。它是众所周知的 EEG 特征,常用于脑机接口。然而,其潜在的神经机制尚未完全了解,因为 ERD 是一个与涉及多条通路的外部事件相关的单一变量,例如运动意图、计划和执行。在本研究中,我们旨在确定诱发 ERD 的主要因素。在两种不同的实验条件下,指示参与者以三种不同的(10%、25% 或 40%MVF:最大自主力)水平握住他们的右手:涉及实时视觉力反馈 (VF) 的闭环条件或前馈 (FF) 方式的开环条件。在每种情况下,参与者被要求重复抓握任务一定次数,时间分别为休息(10.0 秒)、准备(1.0 秒)和运动执行(4.0 秒)。EEG 信号与运动任务同时记录,以评估每种条件下事件相关频谱扰动的时间过程并分析 EEG 功率的调制。我们对指示的抓握力水平和反馈条件下的 mu 和 beta-ERD 进行了统计分析。在 FF 条件下(即无力反馈),运动执行期间中期,对侧运动皮层的 mu 和 beta-ERD 显著减弱,而在 VF 条件下,即使在保持抓握期间,ERD 也保持不变。只有体感皮层的 mu-ERD 在高负荷条件下趋于略强。结果表明,ERD 的程度反映了改变虚拟平衡点的运动计划过程中涉及的神经活动,而不是招募运动神经元来调节抓握力的运动控制过程。
事件相关去同步 (ERD) 是在运动执行和运动想象过程中在感觉运动区域观察到的脑电图 (EEG) 频谱功率的相对衰减。它是众所周知的 EEG 特征,常用于脑机接口。然而,其潜在的神经机制尚未完全了解,因为 ERD 是一个与涉及多条通路的外部事件相关的单一变量,例如运动意图、计划和执行。在本研究中,我们旨在确定诱发 ERD 的主要因素。在两种不同的实验条件下,指示参与者以三种不同的(10%、25% 或 40%MVF:最大自主力)水平握住他们的右手:涉及实时视觉力反馈 (VF) 的闭环条件或前馈 (FF) 方式的开环条件。在每种情况下,参与者被要求重复抓握任务一定次数,时间分别为休息(10.0 秒)、准备(1.0 秒)和运动执行(4.0 秒)。EEG 信号与运动任务同时记录,以评估每种条件下事件相关频谱扰动的时间过程并分析 EEG 功率的调制。我们对指示的抓握力水平和反馈条件下的 mu 和 beta-ERD 进行了统计分析。在 FF 条件下(即无力反馈),运动执行期间中期,对侧运动皮层的 mu 和 beta-ERD 显著减弱,而在 VF 条件下,即使在保持抓握期间,ERD 也保持不变。只有体感皮层的 mu-ERD 在高负荷条件下趋于略强。结果表明,ERD 的程度反映了改变虚拟平衡点的运动计划过程中涉及的神经活动,而不是招募运动神经元来调节抓握力的运动控制过程。
本论文的总体目标是充分利用敏捷固定翼无人机的所有机动能力,实现自主飞行。主要主题是机动设计、控制和运动规划。论文首先讨论了一些初步主题:飞机动力学模型、反馈控制器和优化框架,这些都将在论文的后续部分中使用。接下来,进行调查以评估侧滑和螺旋桨电流在固定翼无人机极限机动中的重要性。如果在设计机动时没有考虑这两种现象中的任何一种,我们就会确定性能损失的成本。
本论文的总体目标是利用敏捷固定翼无人机的所有机动能力来实现自主飞行。主要主题是机动设计、控制和运动规划。论文首先讨论了初步主题:动态飞行器模型、反馈控制器和优化框架,所有这些都将在论文的以下部分中使用。接下来,我们进行了一项调查,以评估横向滑移和螺旋桨电流在固定翼无人机的极限机动中的重要性。如果在设计机动时未考虑这两种现象中的一种或另一种,我们会根据性能损失来确定成本。
包括补充文件:1. 该视频概述了斯坦福太空机器人设施的机器人自由飞行器的功能......(自由飞行器试验台概述和功能.mp4)2. 该视频详细展示了快速行进树 (FMT*) 运动规划算法如何安全地引导悬停机器人......(自由飞行器自主对接试验.mp4)