b'摘要。我们提出了用于解决随机子集和实例的新型经典和量子算法。首先,我们改进了 Becker-Coron-Joux 算法 (EUROCRYPT 2011),将 e O 2 0 . 291 n 降低到 e O 2 0 . 283 n,使用更一般的表示,其值在 {\xe2\x88\x92 1 , 0 , 1 , 2 } 中。接下来,我们从几个方向改进了该问题的量子算法的最新技术。通过结合 Howgrave-Graham-Joux 算法 (EUROCRYPT 2010) 和量子搜索,我们设计了一种渐近运行时间为 e O 2 0 的算法。 236 n ,低于 Bernstein、Je\xef\xac\x80ery、Lange 和 Meurer (PQCRYPTO 2013) 提出的基于相同经典算法的量子行走成本。该算法的优势在于使用带有量子随机存取的经典存储器,而之前已知的算法使用量子行走框架,需要带有量子随机存取的量子存储器。我们还提出了用于子集和的新量子行走,其表现优于 Helm 和 May (TQC 2018) 给出的先前最佳时间复杂度 e O 2 0 . 226 n 。我们结合新技术达到时间 e O 2 0 . 216 n 。这个时间取决于 Helm 和 May 形式化的量子行走更新启发式方法,这也是之前的算法所必需的。我们展示了如何部分克服这种启发式方法,并获得了一个量子时间为 e O 2 0 的算法。 218 n 只需要标准的经典子集和启发式方法。'