当电子技术面向医疗保健和食品领域时,设备的安全性就成为强制性要求。当电子系统需要与人体内部直接互动,与食物或药品一起摄入时,安全性就显得尤为关键。在这一框架下,可摄入电子产品迄今已取得显著进步,为新时代的诊断和治疗铺平了道路。[4–8] 然而,迄今为止可用的可摄入系统[9]除了体积设计和使用后需要回忆外,还存在严重缺陷,主要表现为使用有毒和非一次性材料,不仅对消费者健康而且对环境都构成危害。为此,最近提出“可食用电子产品”[10–12],设想电子系统能够满足关键的电子功能,同时具有可持续性、无毒、摄入安全且具有成本效益。这一新兴领域的独特之处在于利用不同性质的可食用材料(如食品、药物、食用金属、食用色素、染料和聚合物)作为电子元件,根据其电子特性,提供所有必要的构件:导体、绝缘体、半导体。由于绝对安全的成分,可食用设备在完成其任务后会在体内降解,这意味着不会产生任何潜在的副作用。由于处于新兴阶段,该领域的实例很少。然而,这一新范式的可行性依赖于几个鼓舞人心且颇为奇特的可食用原型,特别是基于食物的电子元件,例如奶酪超级电容器[13]、西兰花麦克风[14]、木炭基生物燃料电池[15]、丝绸传感器[16]基于食用色素的晶体管[12,17]等。为了履行跟踪、监控、传感和数据传输等基本电子职责,可食用电子系统将需要有源电路。在这种情况下,晶体管是未来可食用系统的骨干组件,低压/低功耗操作是必需的。
抽象的。 ,q wklv uhvhdufk lqwurgxfhv d phwkrg wr frqwuro vwudwhj \ ri d vrodu skrwryrowdlf 39 v \ vwhp frqqqhf frqqhffww w w w w w w w w w wkh julg)ru 0d ru 0d [lpxp 3rlqlqlq whr friq whnj v v v y y y y y y y y y y y y y y y y y y y y y y y y. UWHU 96&LV XVHG LQ WKLV V \ VWHP /RDG DW 3 && UHFHLYHV WKH $&SRZHU IURP'&SRZHU REWDLQHG IURP 39 DUUD hydoxdwh xqlw whpsodwhv dqg dq $ uwlilfldo 1hxudo 1hwzrun $ 11 frqwuroohu lvprxwhf u7gwhv u7gwhv wruwlrq 7+ q julg fxuuhqw glvwruwlrqv irxqg wr eh ohvqdohg dohg lwqldowl y ilowhu edvhg frqwuro dojrulwkp lv lv hpsor \ hpsor \ hg rshudwlrq $ v \ qfkurql] frdwwqwqwqhvqh fwlrq wr wkh wkh julg zkhq zkhq dqg glvfrqq qhfwlrq zkhq zkhq zkhq xqdydlodeoh([shulphqwv zhu frq zhuh frqggxfwhoo fdvlwqlwql wzrun $ 11 lv xvhg dv h [whqvlyh phwkrg zklfk jlyh ehwwhu shuirupdqfh dqg wrwdo kduprqlf glvwruwlrq
目前,俄罗斯的储能技术已达到电力系统中普遍实际应用的水平。在各种类型的电力系统中实施储能系统(ESS)是俄罗斯电力工业发展中最重要的趋势之一。高速率储能系统可以比传统方法更有效地解决一系列复杂问题[1-5]。储能系统是一种多功能设备,能够调节有功和无功功率、频率,执行有源滤波高次谐波和补偿三相电压不对称的功能。如今,储能系统应用的最大技术和经济效果首先体现在分布式发电对象、智能电网和微电网(包括使用可再生能源的电网)以及石油和天然气部门的离网发电厂。上述对象的发电主要由柴油机、燃气轮机和燃气发动机组产生。燃气发电机 (GEG) 和柴油发电机组 (DGU) 在结构上具有很高的可靠性,这使得它们能够使用廉价的气体燃料(天然气、丙烷、丁烷、伴生气等),这些燃料通常在石油和天然气生产地很丰富。同时,与 DGU 不同,GEG 具有许多特点 [6]:- 当额定功率突然激增/下降 10-20% 时,GEG 会被技术保护系统关闭;
摘要:传输系统操作员对大型风电场施加了几个网格代码约束,以确保电源系统稳定性。这些限制可能会由于无法销售所有电力而减少风电源厂的净值。违反这些约束的行为也导致对风电场运营商的处罚。因此,在本研究中制定了一种操作策略,该策略用于使用储能系统优化风电场的运行。这有助于填充传输系统操作员施加的所有网格代码约束。特别是在本研究中考虑了有限的功率约束和储备功率约束。此外,开发了一种优化算法,以最佳的储能系统尺寸,从而降低了风电场的总运营和投资成本。还详细分析了影响储能系统大小的所有参数。此分析允许风电场运营商考虑到网格代码约束和风电场的本地信息的最佳储能系统的最佳尺寸。
摘要 本文提出了一种基于现代深度强化学习的微电网多时间尺度协调运行方法。考虑到不同储能设备的互补特性,所提出的方法通过引入分层的两阶段调度模型实现了电池和超级电容器的多时间尺度协调。第一阶段使用每小时预测数据做出初步决策,而不考虑不确定性,以最小化运营成本。第二阶段旨在为第一阶段的决策生成纠正措施,以补偿实时可再生能源发电波动。第一阶段被表述为非凸确定性优化问题,而第二阶段被建模为马尔可夫决策过程,通过熵正则化的深度强化学习方法即软演员-评论家来求解。软演员-评论家方法可以有效地解决探索-利用困境并抑制变化。这提高了决策的鲁棒性。仿真结果表明,可以在两个阶段使用不同类型的储能设备来实现多时间尺度的协调运行。证明了所提方法的有效性。关键词:微电网运行,混合储能系统,深度强化学习
摘要:随着连接和自动驾驶汽车(CAVS)开发的显着进步,远程操作的整合对于提高安全性和运营效率至关重要。但是,远程运行面临着重大挑战,网络潜伏期是影响其性能的关键因素。本调查文件探讨了网络潜伏期以及最新缓解/补偿方法的影响。它检查了对脉动通信链接(即上行链路和下行链路)的级联效应,以及数据传输的延迟如何影响运营商的实时感知和决策。通过阐明挑战和可用的缓解策略,该论文为研究人员,工程师和从业人员提供了宝贵的见解,致力于在不断发展的骑士景观中进行无缝融合的远程流动整合。
我在此提交一篇由 Timothy R. Clark 撰写的论文,题为“评估在国家空域系统中运行的遥控飞机的机载监视和通信双向数据链”。我已检查了该论文的最终电子版形式和内容,并建议将其接受为部分满足理学硕士学位(主修航空系统)的要求。
ceocfo:根据Ampere Inc网站的说法,Wolkiewicz先生,您正在“工程动力的发展”。如何?Wolkiewicz先生:非常感谢您的对话和机会,让我们分享有关我们领先技术的背景以及我们如何设计权力的发展。我们是以客户为中心的,并且引入了比替代市场产品更节能的技术。客户将通过降低成本,提高功率质量并减少温室气体排放来获胜。Ampere正在对被称为内燃机的一百二十年技术进行重大改进。我们已经对发动机进行了完整的重新设计,并确保了涵盖我们创新更改的专利。我们可以自豪地说,我们有一个工作的单笔冲程引擎,该引擎在2021年进行了商业化。我们能够在包括氢在内的替代燃料上操作该发动机。我们认为,世界正在以越来越多的速度向氢气加油和运输部门移动。
随着能源公司寻求在可再生能源领域实现投资组合多元化,电气化需求将继续增加。对电网基础设施的需求将不断增加。分布式能源 (DER),例如屋顶太阳能光伏 (PV) 和电动汽车,将遇到一系列运营问题,例如承载容量、过载、逆流、相位平衡、频率漂移和电压变化。电池储能系统有助于缓解其中一些问题。本文回顾并讨论了有关澳大利亚运营电池储能系统的文献和公开信息。结果发现,小型电池和大型电池都从根本上解决了电网运营问题。随着澳大利亚朝着高 DER 渗透率和高可再生能源发电的方向发展,将需要更多的电池储能系统来抵消运营问题。私人资金的缺乏,尤其是对小型电池的缺乏,可能会导致 PV DER 落后于电气化的整体需求。
概述 GM50301 是一款 2.5GHz 、 10 路输出差分扇出缓冲 器,用于高频、低抖动时钟 / 数据分配和电平转换。输 入时钟可以从两个通用输入或一个晶体输入中选择。 所选定的输入时钟被分配到三组输出,两组包含 5 个 差分的输出和 1 个 LVCMOS 输出。两个差分输出 组均可被独立配置为 LVPECL 、 LVDS 或 HCSL 驱 动器,或者被禁用。 LVCMOS 输出具有用于在启用 或禁用时实现无短脉冲运行的同步使能输入。 GM50301 采用一个 3.3V 内核电源和 3 个独立的 3.3V 或 2.5V 输出电源供电。 GM50301 具有高性能、高功效而且用途广泛,使其 成为替代固定输出缓冲器器件的理想选择,同时增加 系统中的时序裕度。 GM50301 在内核和输出电源域之间没有电源时序要 求。 功能框图