• SWIMMR,即空间天气创新、测量、建模和风险 (SWIMMR) 计划,是由英国研究与创新 (UKRI) 战略优先基金进行的一项为期五年、投资 2000 万英镑的计划,旨在提高英国的空间天气监测和预报能力,重点关注空间辐射。SWIMMR Core 任务是 SWIMMR S1“改进的空间和航空现场辐射测量”项目的第二个任务,由英国科学和技术设施委员会 (STFC) RAL Space 的空间物理和操作部实施。该任务将包括由捷克技术大学开发的辐射监测器 HardPix,该监测器集成在 ION 卫星运载器上,从 330 公里至 1200 公里的高度向英国气象局空间天气操作中心提供辐射数据。 • SpaceDOTS 的 DATA DOT 是第一个空间环境数据收集单元,用于收集有关环境事件的关键数据,这些数据直接影响航天器的设计、成本、操作以及最终的任务成功。了解这些动态环境是设计更智能、更安全、更具成本效益的任务的关键。
ION 卫星运载器可通过其推进模块改变其轨道的升交点赤经 (RAAN)。该程序利用地球的扁率 (J2 效应) 来扭转卫星轨道。高度或倾角的变化会导致相位轨道相对于初始轨迹产生差分进动。一旦达到所需的 RAAN 分离,运载器就会执行反向机动以将其自身注入所需的轨道位置。
任务适应性和可扩展性对于响应式太空解决方案至关重要。L3Harris AppSTAR™ 是一个射频有效载荷平台,可使卫星在单个运载器上承载多项任务。更重要的是,它允许操作员重新配置其有效载荷以适应不断变化的任务,即使在部署到太空后也是如此——就像手机用户在其设备上添加、更新和更改应用程序一样。如今,超过 160 个 L3Harris AppSTAR™ 有效载荷正在为政府和商业任务提供服务,我们已经调整了该技术,为小型卫星提供改变游戏规则的软件定义架构。我们在 6U HSAT 小型卫星上展示了其性能和可重新编程性。
此次融资得益于 D-Orbit 令人印象深刻且无与伦比的 16 次成功任务记录;自 2020 年以来,该公司专有的轨道转移飞行器 ION 卫星运载器已在轨道上发射 14 颗,并计划在 2025 年再发射 7 颗。这些任务使该公司能够在轨道上测试 D-Orbit 的专有技术和开创性的第三方创新。这些测试包括用于跟踪和绘制亚厘米碎片的大小、速度和路径以帮助保护卫星免受碰撞的传感器,以及用于及时检测洪水并将洪水地图传递给应急响应人员的 AI/ML 应用程序,从而加快对环境危机的响应时间,有可能挽救生命并最大限度地减少对社区的损害。
D-Orbit 成立于 2011 年,是第一家满足太空市场物流需求的公司。例如,ION 卫星运载器是一种太空飞行器,它可以将卫星运送到轨道上,并将它们分别释放到不同的轨道位置,从而将发射到运行的时间缩短高达 85%,并将整个卫星星座的发射成本降低高达 40%。ION 还可以容纳多个第三方有效载荷,例如初创公司开发的创新技术、研究实体的实验以及需要在轨道上测试的传统太空公司的仪器。整个完全冗余的 ION 可以出租用于边缘计算应用和太空云服务,为卫星运营商提供存储容量和先进的轨道计算能力。
D-Orbit 宣布与 SkyServe STORM 进行在轨边缘计算合作 D-Orbit 将太空边缘计算集成为 SkyServe 马特洪峰任务的一部分 意大利菲诺莫尔纳斯科,2024 年 4 月 18 日:空间基础设施、物流和轨道运输行业的领导者 D-Orbit 今天宣布,他们将利用 SkyServe STORM 平台启用边缘计算功能,搭载在组成公司已经在轨的轨道转移飞行器舰队的部分 ION 卫星运载器上(具体来说,是 ION SCV004 Elysian Eleonora),然后在 2025 年搭载在性能更高的 ION 上。作为马特洪峰任务的一部分,SkyServe STORM 将利用 D-Orbit 的实时地球观测数据馈送、机载计算和数据分发资源,直接在太空中将图像处理成推理,并部署地理空间最终用途应用程序。此次任务旨在使地理空间组织和分析公司能够在卫星上部署人工智能模型,旨在显著增强在轨数据处理和分析能力。“SkyServe STORM 的部署代表着太空数据分析的关键时刻。与 D-Orbit 合作的这次任务使我们能够在轨道上执行复杂的处理任务,并使客户能够更轻松地获取和操作太空数据”,SkyServe 首席执行官 Vinay Simha 表示。“我们很高兴与 D-Orbit 合作,为边缘应用在轨数据处理铺平道路”。SkyServe STORM 部署在 D-Orbit 的 ION 卫星运载器上,将为 D-Orbit 即将执行的任务提供一套数据处理功能,例如智能丢弃、任务分配、压缩和其他深度学习功能。 “我很高兴与 SkyServe 合作完成这项任务。这项任务凸显了领先的太空技术公司之间的合作类型,这些合作为技术、商业和社会带来了有意义的成果”,D-Orbit 业务发展主管 Viney Jean-Francois Dhiri 评论道。“与 SkyServe 的合作不仅促进了他们的在轨 STORM 平台,而且符合我们提供全面在轨服务的使命。将我们的技术与边缘计算机提供商相结合,就像我们与 Unibap 的 iX5 产品相结合一样,使我们能够自 2023 年以来在 24 年及以后为有影响力的解决方案提供一条通往太空的新路线”。D-Orbit 长期以来一直处于在轨部署软件的前沿,在充满活力的生态系统中工作,不断扩展其能力和基础设施以支持创新的空间技术。此次合作彰显了 D-Orbit 推动太空创新的承诺,为客户提供基本服务以展示其在轨道上的能力,同时也为任何希望利用太空独特优势实现其技术和应用的人提供持续支持。关于 D-Orbit D-Orbit 是太空物流和运输服务行业的市场领导者,拥有经过太空验证的服务、技术和成功任务的记录。D-Orbit 成立于 2011 年,是第一家满足太空市场物流需求的公司。例如,ION 卫星运载器是一种太空飞行器,可以将卫星运送到轨道上并将它们分别释放到不同的轨道位置,从而将发射到运营的时间缩短高达 85%,并将整个卫星星座的发射成本降低高达 40%。ION 还可以容纳多个第三方有效载荷,例如创新的
首款通过核聚变增强的电力推进装置 纽约市,纽约州 — RocketStar Inc. 成功演示了 FireStar Drive,这是一种使用核聚变增强脉冲等离子体的突破性航天器电力推进装置。这种创新装置通过利用一种独特的无中子核聚变形式,显著提高了 RocketStar 基础水燃料脉冲等离子推力器的性能。基础推力器通过水蒸气电离产生高速质子。当这些质子与硼原子的原子核碰撞时,硼原子发生聚变,转变为高能碳,并迅速衰变成三个阿尔法粒子。通过将硼引入推力器的排气管,FireStar Drive 实现了这一聚变过程。与加力燃烧室通过将燃料引入排气管来增强喷气发动机推力的方式类似,推进器排气管中发生的聚变显著提高了其性能。发现 这一核聚变发现首次出现在 AFWERX 的 SBIR 第 1 阶段。当时,硼化水被引入脉冲等离子推进器的排气羽流中。这产生了阿尔法粒子和伽马射线,这是核聚变的明显迹象。它在随后的 SBIR 第 2 阶段得到了进一步验证。在佐治亚州亚特兰大的佐治亚理工学院高功率电力推进实验室 (HPEPL),它不仅产生了电离辐射,还将基础推进装置的推力提高了 50%。“ RocketStar 不仅逐步改进了推进系统,而且通过应用新概念在排气中产生聚变-裂变反应,实现了飞跃,”新墨西哥大学核工程教授 Adam Hecht 表示。“这是技术发展中激动人心的时刻,我期待着他们未来的创新。”“我们的团队已经探索了一段时间,我们对初步测试的结果感到非常兴奋,”RocketStar 首席执行官 Chris Craddock 表示。 “在佛罗里达的一次会议上,我在一张餐巾纸上勾勒出这个想法,并向 Miles Space 的创始人 Wes Faler 描述了它。他在开发基础推进器和聚变增强器方面非常聪明。我们收购了 Miles Space,Faler 现在是我们的首席技术官。所以现在我很高兴能够让我们已经非常出色的推进器进行聚变增强,并显著提高性能。感谢 AFWERX 和 USSF 相信这是可能的!” 下一步 RocketStar 的现有推进器现已可供客户交付。它被称为 M1.5,将作为 D-Orbit 专有的 OTV ION 卫星运载器上的托管有效载荷在太空中进行演示,该卫星运载器将执行计划于今年 7 月和 10 月进行的两次 SpaceX 运输机任务。
D-Orbit 是太空物流和运输服务行业的市场领导者,拥有经过太空验证的服务、技术和成功任务的记录。D-Orbit 成立于 2011 年,是第一家满足太空市场物流需求的公司。例如,ION 卫星运载器是一种太空飞行器,可以将卫星运送到轨道上并将它们分别释放到不同的轨道位置,从而将发射到运行的时间缩短高达 85%,并将整个卫星星座的发射成本降低高达 40%。ION 还可以容纳多个第三方有效载荷,例如初创公司开发的创新技术、研究实体的实验以及需要在轨道上测试的传统太空公司的仪器。ION 还可以租用用于边缘计算应用和太空云服务,为卫星运营商提供在轨存储容量和先进的计算能力。D-Orbit 的路线图包括成为在轨服务市场的重要参与者,该市场预计将成为太空领域增长最快的市场之一。我们在意大利、葡萄牙、英国设有办事处,并在美国成立了一支专注于公交车设计和制造的新团队,我们是世界上第一家获得 B 类公司认证的太空公司,追求有利可图、对环境友好且对社会有益的商业模式。
5 哈勃太空望远镜系统 5-1 5.1 支持系统模块 5-2 5.1.1 结构和机制子系统 5-2 5.1.2 仪器和通信子系统 5-7 5.1.3 数据管理子系统 5-8 5.1.4 指向控制子系统 5-10 5.1.5 电力子系统 5-14 5.1.6 热控制 5-16 5.1.7 安全(应急)系统 5-16 5.2 光学望远镜组件 5-18 5.2.1 主镜组件和球面像差 5-19 5.2.2 次镜组件 5-23 5.2.3 焦平面结构组件 5-24 5.2.4 OTA 设备部分 5-24 5.3 精细制导传感器 5-25 5.3.1 精细制导传感器组成和功能 5-25 5.3.2 铰接镜系统 5-27 5.4 太阳能电池阵列和抖动问题 5-27 5.4.1 配置 5-27 5.4.2 太阳能电池阵列子系统 5-28 5.4.3 维修任务 3A 的太阳能电池阵列配置 5-29 5.5 科学仪器控制和数据处理单元 5-29 5.5.1 组件 5-29 5.5.2 操作 5-30 5.6 空间支持设备 5-31 5.6.1 飞行支持系统 5-32 5.6.2 轨道替换单元运载器 5-33 5.6.3 机组辅助设备 5-35
阿丽亚娜-5E 显然,发送到地球静止轨道(阿丽亚娜的主要市场)的商业通信卫星的质量将会继续增长。阿丽亚娜-5 进入 GTO 的目标容量为 5.97 吨,将不再能够容纳每次发射两颗卫星,而这对于盈利至关重要。因此,1995 年 10 月在图卢兹举行的欧空局部长理事会批准了阿丽亚娜-5E(E=Evolution)计划,将双有效载荷 GTO 容量提高到 7.4 吨,预计 2002 年投入使用。大部分改进(800 千克)来自于将主发动机升级为 Vulcain-2 型号:通过加宽喉管 10%、增加燃烧室压力 10%、延长喷嘴和改变 LOX/LH 2 混合比,将推力提高到 1350 kN。最后一个要素要求将油箱舱壁降低 65 厘米,将推进剂质量增加到 170 吨。焊接助推器壳体而不是用螺栓将它们连接在一起可节省 2 吨重量,并允许在顶部段多装 2430 公斤推进剂,从而将 GTO 容量提高 300 公斤。VEB 的新复合结构可节省 160 公斤重量。用更轻的 Sylda-5 替换 Speltra 运载器可增加 380 公斤容量。燃烧期间的滚动控制将由推进器提供