。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 8 月 24 日发布。;https://doi.org/10.1101/2022.08.24.505004 doi:bioRxiv 预印本
这项研究是 1958 年底开始的 SATURN 系列航天运载工具系统研究的产物,其中地月运输任务被选为 SATURN 运载工具的典型和主要任务。这项任务用于优化运输系统,同时不忽视 SATURN 运载工具的其他要求,这些要求也已建立,例如 24 小时通信卫星。还考虑了 SATURN 运载工具预计要完成的其他任务,例如轨道返回运载工具、先进推进系统测试和行星探测器。但是,本报告未讨论这些任务。所有这些任务,
弥合技术差距并实现关键领域的自力更生仍然是一项重大挑战。受此影响,印度的一些先进空间技术完全依赖进口,例如高强度碳-碳(C-C)纤维、太空使用的太阳能电池等。基础设施限制:印度空间技术领域的初创企业面临基础设施相关的限制。这使得他们很难快速制作原型并测试模型。出现这种情况的部分原因是私营企业缺乏先进的测试和培训设施。缺乏技术人才:训练有素的科学家、工程师和技术人员仍然短缺,无法满足不断扩大的太空计划的需求。商业竞争日益激烈:全球航天工业正在迅速商业化,私营公司正在迅速进入该领域。
缩写和首字母缩略词...................................................................................................... xiii 1.0 介绍................................................................................................................................... 1-1 1.1 海上发射系统概述............................................................................................................... 1-1 1.2 海上发射组织...................................................................................................................... 1-5 2.0 运载工具描述...................................................................................................................... 2-1 2.1 天顶星第一级...................................................................................................................... 2-3 2.2 天顶星第二级...................................................................................................................... 2-7 2.3 Block DM-SL—上级...................................................................................................... 2-8 2.4 有效载荷单元...................................................................................................................... 2-9 3.0 性能...................................................................................................................................... 3-1 3.1 发射场............................................................................................................................. 3-2 3.2 上升轨迹...................................................................................................................... 3-3 3.3
图 1 国防部正越来越多地在各种系统中使用自主能力。 ........................................................................................................................................... 5 图 2 全球自主初创企业地图(顶部);初创企业机会目标分类(底部) ...................................................................................................................... 7 图 3 机器智能生态系统 ............................................................................................................................. 8 图 4 自主性在国防部的各种重要任务中获得作战价值 ............................................................................. 12 图 5 战斗老兵刷新无人机技能 ............................................................................................................. 18 图 6 “在环”监督为人机合作提供更多机会 ............................................................................................................. 19 图 7 建立对自主系统的适当信任校准 ............................................................................................. 22 图 8 用于系统 V&V 和性能增强的在线处理器 ............................................................................. 34 ........................................................................................................................... 43 图 10 红色框中显示了 Airborg(上中)的能力。无人机的最大起飞总重量与有效载荷(左)和续航时间(右)进行了比较。 .................................................................................................................... 44 图 11 该研究评估了许多候选项目,并选择了那些涵盖了一系列自主优势的项目。 ........................................................................................................... 46 图 12 显示 ARGUS-IS 广域传感器的元素(左),以及可实现机载自主的传感器功能的技术变化速度(右)。 ............................................................................. 50 图 13 显示了查获媒体的示例(左),以及可以实时理解存储信息的工具(中间)。由此产生的社交网络可以揭示实时威胁(右)。 ........................................................................................................... 52 图 14 当前的水雷对抗能力利用两个独立的运载工具——一个用于搜索和探测的自主 UUV(左)和一个由雷区有人驾驶的船只远程操作的运载工具(右)。 ............................................................................................. 56 图 15 级联无人水下运载工具概念图。 .............................................. 62 图 16 使用无人机系统进行有机战术地面车辆支援的概念图。 ........................................... 66 图 17 完全由火蚁建造的木筏,该建筑遵循一些简单的规则,形成一个浮力结构,使蚂蚁能够存活直到到达干燥的陆地。 ................................ 84 图 18 物联网智能对象的数量和类型都在迅速增加。 ........................................................................................................................... 88 图 19 无人机在典型社区中从物联网收集数据的示意图。 ......................................................................................................................... 89 图 20 联合空中任务周期内的 MAAP 团队职责 ............................................................................................. 95