现有的交叉点设计具有双重目标:调节交通流量并确保所有道路使用者的安全。他们通过相互间接的路径来控制车辆和行人的运动,以优化效率和安全性。然而,在迅速的技术进步的背景下,软件定义的功能很普遍,传统的交叉点在很大程度上取决于硬件,从而限制了它们的适应性以及它们可以集成技术升级的便利性。这种限制至关重要,因为紧急技术可以显着提高安全性和运营效率。这些进步通常取决于连接的交叉点的功能,这些交叉点是智能转换系统(ITS)不可或缺的。ITS使用蜂窝V2X技术来促进车辆,基础设施和其他道路使用者之间的强大无线通信,从而支持信号阶段和时间安排,避免碰撞以及合作自动驾驶等功能。尽管取得了这些进步,但车道交叉系统仍然具有策略和不可编程,无法完全满足对运输效率和安全性的不断发展的需求。本文介绍了OpenInter-extions,这是一个变革性的框架,通过合并和模块化高级技术(例如相机系统,激光雷达传感器,V2X通信)和异质稳定平台来重新涉及相交设计。itOpenIntersection旨在支持自适应软件定义的交叉点(SDI)系统的快速开发,验证和部署,以优化交通流量并有效地增强道路安全性。
对商业无机肥料的越来越依赖,引起了严重的环境和经济问题,包括土壤退化,养分浸出,水污染和温室气体排放。这篇综述对通过热化学过程(即热解,气化和水热碳化)产生的生物质衍生的炭进行批判性评估,作为合成肥料的潜在替代方法。在三个生物质衍生的炭中,生物炭是由于其高稳定性,养分保留能力和长期碳固存益处而成为土壤修正案最可行的选择。气化炭尽管具有很高的孔隙率和吸附能力,但通常缺乏生物利用营养素,而氢炭虽然富含有机化合物,但却带来了与稳定性和植物毒性相关的挑战。生物炭的应用已被证明可显着减少n 2 O排放,增强土壤水的保留和减轻养分径流,从而与常规肥料具有明显的环境优势。此外,生物炭已从实验性的土壤修正案转变为在全球农业中越来越多地采用的市售产品,进一步增强了其实际生存能力。然而,大规模实施仍然面临经济和后勤限制,包括高生产成本,运输效率低下和监管不确定性。通过补贴和碳信用等政策激励措施来应对这些挑战,可以增强生物炭生产和应用的经济可行性。鉴于这些发现,本综述着重于生物炭,是商业无机肥料的最实际和可持续的替代品。
背景:交叉点是我们道路上的关键点,经常成为拥塞和事故的热点。目标:通过DRL和V2I的整合,该计划旨在改善交通流通,减少交通拥堵并提高城市地区的运输效率。方法:该倡议在将车辆到基础结构(V2I)与深度强化学习(DRL)合并以改变城市运输,重点关注交叉路口管理方面。统计分析:传统方法,例如静态标志和交通信号灯,通常不足,因为它们更多地关注整个交通流量,而不是单个车辆的特定行为。为了解决这个问题,我们正在引入一种新的策略,该战略采用了深入的强化学习(DRL)来更好地管理车辆在交叉口的转弯。发现:一种优化的DRL算法,可增强安全性,最大程度地减少拥塞,减少未信号交叉点的等待时间。应用和改进:拟议的交叉路口管理系统可以适应各种交叉路口布局(例如T-界面,回旋处)和多元化的交通参与者(例如,公共汽车,自行车,自行车,行人)。此外,与既定的交通管理基础架构(如交通信号灯或坡道仪表)的集成可以提高城市或区域层面的整体交通效率和流动优化。
近年来,人们对高速地面引导交通 (HSGGT) 的兴趣日益浓厚。1991 年 5 月,德克萨斯州授予了连接达拉斯/沃斯堡、圣安东尼奥和休斯顿的高速铁路系统建设特许经营权。1992 年 1 月,双方签署了一份详细的特许经营协议,使用法国高速列车 (TGV) 建设系统。1989 年 6 月,佛罗里达高速铁路委员会 (现为佛罗里达州交通部的一部分) 建议授予连接奥兰多机场和奥兰多国际大道主要景点区的磁悬浮系统的建设特许经营权,1991 年 6 月,佛罗里达州签署了一份特许经营协议,使用德国 Transrapid TR07 建设系统。1992 年 11 月,Amtrak 开始在东北走廊测试瑞典 X2000 倾斜列车,1993 年,Amtrak 将在东北走廊测试德国城际特快列车 (ICE)。1991 年,作为国家磁悬浮计划的一部分,美国获得了四份开发磁悬浮系统的合同。1991 年的《多式联运地面运输效率法案》(ISTEA) 规定进一步开发美国设计的磁悬浮系统。除了目前正在进行的项目外,全国各地还有许多关于新高速系统和提高现有铁路走廊速度的提案。
近年来,人们对高速地面引导交通 (HSGGT) 的兴趣日益浓厚。1991 年 5 月,德克萨斯州授予了连接达拉斯/沃斯堡、圣安东尼奥和休斯顿的高速铁路系统建设特许经营权,1992 年 1 月,双方签署了一份详细的特许经营协议,使用法国高速列车 (TGV) 建设系统。1989 年 6 月,佛罗里达高速铁路委员会 (现为佛罗里达州交通部的一部分) 建议授予连接奥兰多机场和奥兰多国际大道主要景点区的磁悬浮系统的建设特许经营权,1991 年 6 月,佛罗里达州签署了一份特许经营协议,使用德国 Transrapid TR07 建设系统。1992 年 11 月,美国铁路公司开始在东北走廊测试瑞典 X2000 倾斜列车,1993 年,美国铁路公司将在东北走廊测试德国城际特快列车 (ICE)。 1991 年,作为国家磁悬浮计划的一部分,美国获得了四份开发磁悬浮系统的合同。1991 年的《多式联运地面运输效率法案》(ISTEA)规定了美国设计的磁悬浮系统的进一步发展。除了目前正在进行的项目外,全国各地还提出了许多关于新高速系统和提高现有铁路速度的提案。
目标为与2008年相比,运输效率提高至少40%。 (1)能源效率现有船舶指数(EEXI) EEXI是要求现有船舶具有与新船相同能源效率水平的规定,适用于所有400总吨及以上的从事国际航行的船舶*1。EEXI的验证应在2023年或以后的IAPP证书第一次年度、中间或换证检验时进行。每艘现有船舶的达到的EEXI应使用与EEDI类似的公式计算,并需满足一个要求的EEXI,该EEXI是根据每种船舶的EEDI参考线乘以船舶大小规定的折减系数计算得出的。如果达到的EEXI值不能满足要求的EEXI,船舶应采取措施提高能源效率,如轴/发动机功率限制等,以满足要求的EEXI。对于已经应用EEDI要求的船舶,如果达到的EEDI值也符合要求的EEXI,则IEE证书或EEDI技术文件中所示的达到的EEDI值可以作为达到的EEXI的替代 (2) 营运碳强度指标 (CII) 营运碳强度指标是基于营运燃料消耗数据的船舶评级机制。每艘从事国际航行的5,000总吨及以上的船舶*2应每年根据数据计算达到的CII *1 散货船、气体运输船(LPG运输船)、Tan
一般背景。将药物局部输送到人体难以接近的部位是成功治疗各种严重疾病(如癌症、缺血性心脏病或缺血性脑卒中)的关键。传统疗法要么副作用明显(注射的药物影响健康组织),要么由于这些部位附近的血液循环停滞而导致药物向目标部位的运输效率低下。磁性纳米载体(携带药物的纳米颗粒或磁性脂质体)在外部施加的磁场下沿血管网络引导并直接在目标部位(肿瘤组织或血凝块)释放药物,原则上可以克服这些问题 [1]。然而,由于梯度磁场的物理限制,这种技术不能轻易控制纳米载体通过分支血管网络的位移。磁性载体的形状各向异性和/或柔韧性可通过将磁场梯度与 3D 振荡磁场的复杂叠加,结合其平移、角运动或跳动运动,显著改善对其运动的远程控制 [2]。这种磁性载体被称为磁性微游泳者。在过去的几十年中,人们设计了各种类型的磁性微游泳者,并开发了不同的游泳策略。然而,据我们所知,它们仍然没有一个能满足临床应用的大部分标准。其中一些太大(几毫米大小的微型机器人)而无法穿过血管 [3],另一些则是使用非常复杂的方法制造的,并且/或者数量非常少,与实际应用不相容 [4]。最近,我们尼斯物理研究所 (INPHYNI, UMR 7010) 的研究小组已经证明,超小磁性纳米粒子 (
Nexans的愿景基于相互联系的超导体系统网络,能够应对明天的能源挑战。这种野心反映在标志性的项目中,例如部署在贝尔福特 - 戴尔线上的超导故障电流限制器,这是两个玩家之间的合作的里程碑以及超级碎片项目,以供蒙特纳斯·沃伊尔(Montparnasse-Vouillé)与超电导电缆的蒙特帕纳斯·沃伊尔(Montparnasse-Vouillé)为蒙特纳斯·沃伊尔(Montparnasse-Vouillé)提供动力。这些伙伴关系说明了两个参与者对创新和可持续发展的承诺。“我们很荣幸能与SNCFRéseau合作将这种创新解决方案部署到铁路行业。Nexans开发的故障电流限制器反映了我们对应对技术挑战的持续承诺,并为电网的安全性和可靠性做出贡献。每天,Nexans的创新团队都会承担可持续电气化的挑战,开发了创新的解决方案来支持铁路交通的增长。“该项目是SNCFRéseau实施的创新战略的一部分,以提高铁路运输效率更高,更可持续。通过与Nexans的这种合作伙伴关系,我们能够实施实力技术解决方案,以使我们的客户和环境受益。超导故障电流限制器的部署计划于2025年末。这个项目是铁路电气化的重要一步,为进一步的创新铺平了道路,使运输更安全,更可靠,更可持续。
A. 联邦公报。1999 年 2 月 2 日,美国运输部在联邦公报上公布了其最终规则,即 49 CFR 第 26 部分,题为“弱势企业参与交通部计划”,经修订。它补充了 1999 年 3 月 4 日之前美国运输部发布的有关财政援助计划的所有 DBE 法规、命令、通告和行政要求。该规则要求马里兰州运输部实施一项计划,以鼓励 DBE 参与其由美国运输部资助的承包活动。B. 49 CFR 第 23 和 26 部分,子部分 A 至 F,适用于所有适用的联邦交通部财政援助计划。该法规全文通过引用纳入马里兰州运输部 DBE 计划。它要求根据 49 CFR 第 23 部分为 DBE 和 ACDBE 制定统一的认证计划。它还要求制定总体目标和单个合同目标。为实现本计划,应根据那些准备就绪、愿意并且有能力的认证公司设定具体合同的目标。参见 49 CFR §26.51。MDOT 每三年为接受 USDOT 援助的每个管理部门的 DBE 设定总体目标。C. 1991 年《多式联运地面运输效率法案》(ISTEA)第 I 和 V 章授权的联邦援助公路资金(Pub. L. 102-240, 105 Stat. 1914)。D. 1998 年《运输公平法案》(TEA-21)第 I、III 和 V 章(Pub. L. 105-178, 112 Stat. 107)。E. 《迈向 21 世纪进步法案》(MAP-21)的 A 和 B 部分(Pub. L. 112-141, 126 Stat. 405)。 F. 修订美国地面运输法案(FAST法案)(Pub. L. 114-94)。
与可再生能源相结合,提高能源效率可减少能源供应措施所需的总体工作量,并对刺激经济增长和减少温室气体排放做出重大贡献。工业领域的能源效率投资有助于设施和设备的现代化,从而改善能源使用和强度。在鼓励投资的有利政策的推动下,2018 年全球工业能源效率投资为 400 亿美元,中国占 37%,其中能源公司 (ESCO) 发挥了重要作用。在印度,强有力的政府政策使工业设施现代化投资每年增长约 6%。尽管 2018 年近期有所下降,但建筑领域的能源效率措施和投资仍在增加。在中国,住宅房地产企业采用更严格的建筑标准,正在扩大对建筑领域能源效率的投资。电动汽车 (EV) 销量增长也对运输效率产生了越来越积极的影响。全球电动汽车数量持续增长,2018 年达到 510 万辆,比 2017 年增长 63%。中国是最大的电动汽车市场,2018 年销售了 110 多万辆电动汽车8。在印度,2018-2019 年售出了 63 万辆电动三轮车,比化石燃料车型多出 10 多万辆。据估计,2018 年全球销售的电动汽车和公共汽车将抵消每天 10 万桶的运输石油需求增长。据估计,2018 年销售的电动汽车(包括两轮车和三轮车)的电力需求约为每年 12 太瓦时 (TWh),仅占 2018 年全球电力需求增长的 1%9。分散式可持续能源系统的部署为社区提供了新的电力获取途径,带来了增强经济机会和社会发展的机会,而无需等待电网连接。截至 2018 年,离网太阳能系统已为全球超过 7,300 万户家庭(3.6 亿人)提供能源,且其覆盖范围正在迅速扩大 10 。因此,离网电器也正在成为全球提高能源效率和减少温室气体排放的重要因素。