私有 Rajant 网状网络提供其他宽带和网状网络产品无法比拟的移动性、性能、可靠性、安全性、可扩展性和灵活性。我们的自修复点对点网络通过互连的 BreadCrumb® 无线节点网络和我们获得专利的¹ InstaMesh 网络软件提供连接。所有网络节点和客户端都可以随时在网络内的任何位置移动。由于每个 BreadCrumb 都可以有多个连接,因此始终存在一条可行的路径来传递您的信息。事实上,您添加的节点越多,您建立的通信路径就越多,您的网络就越有弹性。
肯塔基州的企业和个人居民依赖于他们每天使用的商品的道路,铁路,水道,机场和管道的货运系统。在货运运输系统中的每笔投资都会提高吞吐量,提高效率并降低对肯塔基州经济产生直接,积极影响的成本。同时,货运运输需要大量的能源支出,以将大量工业和消费品在长距离上移动。许多机构和企业制定了政策,投资和计划,以了解和减轻货运运输的风险,并为所有运输系统使用者改善环境质量和安全性。
摘要 - 可持续运输需要电动汽车的就业能力(EV)。电池供电的车辆将在运行时间,可靠性和可维护性方面与内燃机竞争。电动汽车中部署的电池管理系统(BMS)具有监视和控制电池的关键方面的动力。电池建模在使用必要的参数添加BMS方面起着关键作用,这有助于对电池的控制和所需的充电和排放水平,并预测电池在电动汽车(如电动汽车)中的行为。审查了各种电池型号。提出了用于锂离子电池的等效电路模型(ECM)。提出的模型在经受不同驱动周期的不同温度下进行了实验测试,并经过验证。工作为实时复制电池行为提供了有效的解决方案,考虑电动汽车应用程序 - 电池,建模,等效电路模型,驱动周期,电动车辆
g全球电动运输需要开发电动驱动技术系统的高效和成本效益的解决方案。800-V EV架构的出现标志着改善车辆性能的重要一步。该技术可实现更高的充电能力和更快的充电时间。电池占电动车总成本的取代部分,因此重要的是要尽可能多地使用牵引力的能量并减少损失以增加车辆的范围。提高效率可能涉及对系统的性能要求和设计约束的仔细评估。电动驱动器中的牵引电动机通常由可变的频率驱动器(VFD)提供动力,以启用可变速度操作。电池的直流电压通过逆变器转换为三相交流电。逆变器包含通过合适的脉冲图案为电动机创建所需的正弦波的开关,图1。调节脉冲宽度会改变波浪频率,从而改变电动机速度。
群集,定期间隔短的短篇小说重复(CRISPR)基因组编辑是最受欢迎的基因编辑技术之一,其简单,便利性和效率。如今,CRISPR-CAS9技术已用于农业,医学,生物学和许多其他领域,用于筛选靶基因,创建模态动物和基因治疗。 但是,在CRISPR-CAS9的临床应用之前,仍然存在障碍,运输需要安全有效的交付系统。 研究表明,使用脂质纳米颗粒(LNP)作为载体,基于脂质纳米颗粒的递送是一种很好的运输方法。 lnp是一种vesica样球,由装饰有信号蛋白及其货物的脂质壳组成。 LNP提高了CRISPR-CAS9系统的稳定性和免疫原性,并具有易于生产和高可修改性的优点,使其成为未来具有很高潜力的理想载体。 本综述介绍了LNP的四个基本组成部分:可局部的阳离子脂质,聚乙烯甘油(PEG)脂质,Zwitterionic磷脂和胆固醇。 This review focuses on the applications of LNP, including lipid-encapsulated gold nanoparticles, biocompatible monosized lipid-coated stellate mesoporous silica nanoparticles (LC-MSNs), biodegradable lipid and messenger RNA Nanoparticles, Mulberry leaf lipid nanoparticles, phenylboronic acid-derived lipid nanoparticles,脂质聚合物杂化纳米颗粒与超声介导的微生物破坏,阳离子脂质辅助的PEG-B-PLGA纳米颗粒,多价N-乙酰乳糖胺 - 脂肪胺 - 脂肪纳米颗粒等如今,CRISPR-CAS9技术已用于农业,医学,生物学和许多其他领域,用于筛选靶基因,创建模态动物和基因治疗。但是,在CRISPR-CAS9的临床应用之前,仍然存在障碍,运输需要安全有效的交付系统。研究表明,使用脂质纳米颗粒(LNP)作为载体,基于脂质纳米颗粒的递送是一种很好的运输方法。lnp是一种vesica样球,由装饰有信号蛋白及其货物的脂质壳组成。LNP提高了CRISPR-CAS9系统的稳定性和免疫原性,并具有易于生产和高可修改性的优点,使其成为未来具有很高潜力的理想载体。本综述介绍了LNP的四个基本组成部分:可局部的阳离子脂质,聚乙烯甘油(PEG)脂质,Zwitterionic磷脂和胆固醇。This review focuses on the applications of LNP, including lipid-encapsulated gold nanoparticles, biocompatible monosized lipid-coated stellate mesoporous silica nanoparticles (LC-MSNs), biodegradable lipid and messenger RNA Nanoparticles, Mulberry leaf lipid nanoparticles, phenylboronic acid-derived lipid nanoparticles,脂质聚合物杂化纳米颗粒与超声介导的微生物破坏,阳离子脂质辅助的PEG-B-PLGA纳米颗粒,多价N-乙酰乳糖胺 - 脂肪胺 - 脂肪纳米颗粒等需要在LNP和CRISPR系统中进行进一步的研究,以优化临床应用的输送特性。关键字:CRISPR,脂质纳米颗粒,载体,基因编辑。