新孢子虫主要感染牛,导致牛流产,估计每年对全球经济造成 10 亿美元的损失。然而,对其生物学的研究一直被忽视,因为既定范式认为它与其近亲、广泛研究的人类病原体弓形虫几乎完全相同。通过使用第三代测序技术重新审视基因组序列、组装和注释,我们在此表明,新孢子虫基因组最初是在与弓形虫同源的假设下错误组装的。我们表明这些物种之间发生了重大染色体重排。重要的是,我们表明最初命名为 Chr VIIb 和 VIII 的染色体确实融合了,从而将新孢子虫和弓形虫的核型都减少到 13 条染色体。我们重新注释了新孢子虫基因组,揭示了 500 多个新基因。我们对非光合质体和线粒体基因组进行了测序和注释,并表明尽管顶质体基因组几乎相同,但物种和菌株之间存在高水平的基因碎片化和重组。我们的结果纠正了目前在 N. caninum 和 T. gondii 基因组数据库中广泛分布的组装伪影,更重要的是,突出了线粒体是以前被忽视的变异源,并为改变同源性范式铺平了道路,鼓励重新思考基因组作为这些病原体比较独特生物学的基础。
ABSTRACR。-我使用DNA-DNA杂交方法在Gruidae(Cranes)和外部limpkin(Ara-Midae)之间产生1,200多个成对比较。基于每个细胞的3-10个复制实验,遗传距离的矩阵包括所有细胞的平均delta tm值以及起重机之间的倒数值。i选择了Delta t•作为适当的差异度量,因为在标准的实验条件下,起重机基因组中几乎所有同源的单拷贝DNA序列都足够相似。所有起重机物种对的归一百分比杂交百分比(NPH)值接近100。由于与小遗传距离的测量相关的实验变化,delta TM数据略微脱离了度量。DNA数据以最佳拟合树方法进行了分析,并通过具套品来检查内部一致性,支持传统的观点,即加冕起重机(Balearica)是现存的最古老的Gruid谱系。神秘的西伯利亚起重机(Grus leucogeranus)作为其余物种的姊妹组,分为四个密切相关的群体。Bugeranus和Anthropoides是姊妹团体。澳大利亚的三种种类(Antigone,Rubicunda和Vipio)形成了进化枝,五种主要是果皮的Grus(Grus,Monachus,Monachus,Nigricollis,Japo-Nensis和Americana)也是如此。Sandhill Crane(G. Canadensis)虽然显然是Gruine进化枝的成员,但它是一个没有近亲的旧血统。1989年3月21日收到,1989年5月18日接受。
激光雷达(光检测和测距)技术有可能彻底改变自动化系统与其环境和用户的交互方式。当今行业中的大多数激光雷达系统都依赖于脉冲(或“飞行时间”)激光雷达,而这种激光雷达在深度分辨率方面已达到极限。相干激光雷达方案,例如调频连续波 (FMCW) 激光雷达,在实现高深度分辨率方面具有显著优势,但通常过于复杂、昂贵和/或体积太大,无法在消费行业中实施。FMCW 及其近亲扫频源光学相干断层扫描 (SS-OCT) 通常针对计量应用或医疗诊断,这些系统的成本很容易超过 30,000 美元。在本论文中,我介绍了我在芯片级光学和电子元件集成方面的工作,以应用于相干激光雷达技术。首先,我将总结将通常体积庞大的 FMCW 激光雷达控制系统集成到光电芯片堆栈上的工作。芯片堆栈由一个 SOI 硅光子芯片和一个标准 CMOS 芯片组成。该芯片用于成像系统,可在 30 厘米的距离内生成深度精度低至 10 微米的 3D 图像。其次,我将总结我在实施和分析一种新的 FMCW 激光雷达信号后处理方法方面的工作,称为“多同步重采样”(MK 重采样)。这涉及非线性信号处理方案下激光相位噪声的蒙特卡罗研究,因此我将展示随机模拟和实验结果,以证明新重采样方法的优势。QS 重采样有可能提高相干成像系统的采集率、精度、信噪比和动态深度范围。
“神经形态”是指与生物神经网络的架构和 / 或动态非常相似的系统 [1, 2, 3]。典型的例子是模仿生物大脑架构的新型计算机芯片,或从昆虫和哺乳动物的视觉或嗅觉系统等中获取灵感以获取环境信息的传感器。这种方法并非没有野心,因为它有望使工程设备能够重现生物有机体的性能水平 — — 主要的直接优势是有效利用稀缺资源,从而降低功耗。如今,神经形态方法主要在两个层面进行研究 (i) 算法和 (ii) 硬件。在算法层面,它利用基于脉冲的处理和训练 [2] 来构建能够有效处理数据的新型机器学习管道。在硬件层面,神经形态方法被用于设计受生物神经系统启发的新型模拟和数字电路和计算机芯片。这导致了新型传感设备的出现,据信这些设备可以产生特别好的候选对象来模拟生物视觉,以及用于设计专用于有效实现刚刚介绍的基于脉冲的系统的计算机芯片。事实上,由于基于脉冲的通信的不连续性和脉冲神经元的时间动态性,在传统计算机硬件上模拟整个脉冲神经元网络的行为在计算上(因此在能源方面)非常低效。这在人工智能 (AI) 领域也有近亲,Geoffrey Hinton 最近在其中引入了“凡人计算”的概念[ 4 ]:一种不存在软件和硬件分离的计算形式。在“凡人计算”中,神经网络解决方案与它们的计算能力独特地联系在一起
RNA 干扰 (RNAi) 仍然是一种强大的技术,可通过 mRNA 降解来有针对性地减少基因表达。该技术适用于多种生物,在物种丰富的鞘翅目 (甲虫) 中非常有效。在这里,我们总结了在新生物中开发该技术的必要步骤,并说明了它在水生潜水甲虫 Thermonectus marmoratus 的不同发育阶段中的应用。可以通过针对已知基因组的近亲或从头组装转录组来经济高效地获得目标基因序列。候选基因克隆利用特定的克隆载体 (pCR4-TOPO 质粒),该载体允许使用单个通用引物为任何基因合成双链 RNA (dsRNA)。合成的 dsRNA 可以注射到胚胎中用于早期发育过程,也可以注射到幼虫中用于后期发育过程。然后,我们说明如何使用琼脂糖固定将 RNAi 注射到水生幼虫中。为了演示该技术,我们提供了几个 RNAi 实验示例,生成具有预测表型的特定敲低。具体来说,晒黑基因 laccase2 的 RNAi 会导致幼虫和成虫的角质层变浅,而眼色素沉着基因 white 的 RNAi 会导致眼管变浅/缺乏色素沉着。此外,关键晶状体蛋白的敲低会导致幼虫出现视力缺陷和捕猎能力下降。综合起来,这些结果体现了 RNAi 作为一种工具的强大功能,可用于研究仅具有转录组数据库的生物体的形态模式和行为特征。
摘要在北美冬眠蝙蝠中引起白调疾病的真菌感染导致受影响物种的人群急剧下降,因为引入了病因pseudogymnoascus destructans。该真菌原产于应土的多种蝙蝠物种,但很少引起严重的病理或宿主死亡。伪造灾难剂通过入侵和消化皮肤组织在冬眠期间感染蝙蝠,从而导致摩托车模式的破坏并随之而来的消瘦。病原体,宿主和环境之间的关系很复杂,个体,种群和物种以不同的方式对真菌病原体做出反应。例如,近亲西卡特西氏菌通过安装强大的免疫反应来应对感染,从而导致免疫病理通常会导致死亡。相比之下,果皮肌肉菌没有对感染的显着免疫学反应。由于宿主与病原体天然范围内的病原体之间的长时间进化而导致这种缺乏强烈的反应,这可能有助于耐受物种的生存。自从最初将真菌引入北美以来15年以来,一些受影响的人群显示出恢复的迹象,这表明真菌,宿主或两者都在进行最终导致共存的过程。基于欧亚大陆的当前知识,政策制定者和保护经理应避免破坏正在进行的进化过程,并采用整体方法来管理Epizootic。北美疾病的建议或实施方法包括使用益生菌和杀菌剂,疫苗接种,并修改冬眠部位的环境状况,以限制病原体的生长,感染强度或宿主对其的反应。
征集 SSB 面试通知书 SSC(技术)女性 - 第 32 课程(2023 年 10 月) 亲爱的候选人, 1. 兹通知您,您已入围参加在博帕尔中央选拔中心举行的 SSB 面试。 2. 您需要到博帕尔中央选拔中心报到。报到地点为博帕尔 Lalghati 的 Gufa Mandir 附近的 Sultania 步兵线正门,仅在选定/分配的报告日期进行,报告日期将在 www.joinindianarmy.nic.in/注册电子邮件 ID 上发布到您的注册账户/通过短信在 0530(AM)之前根据自己的安排。 您将在博帕尔军事站交通检查站接受体检,然后才允许进入。其他陪同人员不得进入。报到当天 0600(AM)之后,不得进入博帕尔军事站。 3. 一旦选定/分配,SSB 日期将不再更改。没有安排缺席批次。注意 1:- 本地候选人。如果您或您的父母或近亲在博帕尔中央选拔中心任职,请暂缓行动并尽快与我们联系。在收到您的确认后,我们将通知您有关更换中心的进一步指示。如果随后发现您隐瞒信息或提供虚假信息,您将被取消候选资格并取消任命资格。注意 2:- 服役人员的监护人。如果候选人是服役人员的监护人,并且被派往同一驻地(即博帕尔驻地)的任何国防机构,请暂缓行动并尽快与我们联系。在收到您的确认后,我们将通知您有关更换中心的进一步指示。如果随后发现您隐瞒信息或提供虚假信息,您将被取消候选资格并取消任命资格。
摘要 背景 微染色体维持 (MCM) 复合物成分 2、4、5 和 6 与人类疾病有关,其表型包括小头畸形和智力障碍。MCM 复合物具有 DNA 解旋酶活性,因此对复制叉的起始和延长很重要,并在增殖的神经干细胞中高度表达。 方法 应用全外显子组测序来确定指数家族神经发育疾病的遗传原因。通过定量实时 PCR、原位杂交和免疫染色来表征 Mcm7 的表达模式。为了证明已鉴定的 MCM7 的致病性质,进行了原理验证实验。结果我们报告称,MCM7 中的纯合错义变异 c.793G>A/p.A265T(g.7:99695841C>T,NM_005916.4)与常染色体隐性原发性小头畸形 (MCPH)、严重智力障碍和行为异常有关,该病与三名受影响个体的近亲家系有关。我们发现小鼠中 Mcm7 的时空表达模式与增殖状态一致:Mcm7 在小鼠早期发育阶段和大脑增殖区表达较高。因此,与分化的神经元相比,Mcm7/MCM7 水平在未分化的小鼠胚胎干细胞和人类诱导多能干细胞中尤其可检测到。我们进一步证明,小鼠神经母细胞瘤细胞中 Mcm7 的下调会降低细胞活力和增殖,并且作为概念验证,野生型而非突变型 MCM7 的过度表达可以抵消这种影响。结论我们报告了 MCM7 突变是常染色体隐性 MCPH 和智力障碍的新原因,并强调了 MCM7 在神经系统发育中的重要作用。
在第一个减数分裂细胞分裂中摘要,大多数生物体的染色体的适当分离取决于chiasmata,这是源自spo11核酸酶催化的编程双链断裂(DSB)的同源染色体之间的连续性交换。由于DSB会导致生殖细胞无法弥补的损害,而缺乏DSB的染色体也缺乏Chiasmata,因此必须仔细调节DSB的数量既不会太高也不太低。在这里,我们表明,在秀丽隐杆线虫中,减数分裂DSB水平受DSB-1的磷酸调节控制,DSB-1是PP4 PPH-4.1磷酸酶和ATR ATL-1 Kinase的相对活性,DSB-1(酵母SPO11辅助剂REC114)的同源物。PPH-4.1突变体中DSB-1磷酸化的增加与DSB形成的减少相关,而DSB-1磷酸化的预防大大增加了PPH-4.1突变体和野生型背景中的减数分裂DSB的数量。秀丽隐杆线虫及其近亲还具有DSB-1的差异旁系同源物,称为DSB-2,而DSB-2的丢失却可以减少年龄增加的卵母细胞中的DSB形成。我们表明,DSB-1的哲学和灭活形式的比例随着年龄的增长和DSB-2的流失而增加,而不可磷酸化的DSB-1则挽救了DSB-2突变体中DSB的年龄依赖性降低。这些结果表明,DSB-2部分进化以补偿DSB-1通过磷酸化的失活,以维持老年动物的DSB水平。我们的工作表明,PP4 PPH-4.1,ATR ATL-1和DSB-2与DSB-1协同作用,以在整个生殖寿命中促进最佳DSB水平。
征集 SSB 面试通知书 SSC(技术)女性 - 第 33 课程(2024 年 4 月) 亲爱的候选人, 1. 兹通知您,您已入围博帕尔中央选拔中心的 SSB 面试。 2. 您需要到博帕尔中央选拔中心报到。报到地点为博帕尔 Lalghati 的 Gufa Mandir 附近的 Sultania 步兵线正门,仅在选定/分配的报告日期进行,报告日期将在 www.joinindianarmy.nic.in/注册电子邮件 ID 上发布到您的注册账户/通过短信在 0530(AM)之前根据自己的安排。 您将在博帕尔军事站交通检查站接受体检,然后才允许进入。其他陪同人员不得进入。报到当天 06:00(AM)之后,不得进入博帕尔军事站。 3. 一旦选定/分配,SSB 日期将不再更改。没有安排缺席批次。注意 1:- 本地候选人。如果您或您的父母或近亲在博帕尔中央选拔中心任职,请暂缓行动并尽快与我们联系。在收到您的确认后,我们将通知您有关更换中心的进一步指示。如果随后发现您隐瞒信息或提供虚假信息,您将被取消候选资格并取消任命资格。注意 2:- 服役人员的监护人。如果候选人是服役人员的监护人,并且被派往同一驻地(即博帕尔驻地)的任何国防机构,请暂缓行动并尽快与我们联系。在收到您的确认后,我们将通知您有关更换中心的进一步指示。如果随后发现您隐瞒信息或提供虚假信息,您将被取消候选资格并取消任命资格。
