许多工业界感兴趣的问题都是 NP 完全的,随着输入规模的增加,计算设备的资源会迅速耗尽。量子退火器 (QA) 是一种物理设备,旨在利用自然界的量子力学特性来解决这类问题。然而,它们与经典机器上的高效启发式算法和概率或随机算法相竞争,后者允许找到大型 NP 完全问题的近似解。虽然 QA 的第一批实现已经投入商业使用,但它们的实际好处还远未得到充分开发。据我们所知,近似技术尚未受到广泛关注。在本文中,我们探讨了如何为量子退火程序系统地构建不同程度的问题近似版本,以及这如何影响结果质量或给定一组量子比特上较大问题实例的处理。我们在不同的开创性问题上展示了模拟和真实 QA 硬件上的各种近似技术,并解释了结果,以更好地理解当前和未来量子计算的现实能力和局限性。
⇒f(x,a)= q(s,a)或f(x)=A⇒数学函数比表高得多•状态描述可以彼此相关=>,如果到目前为止我们还没有遇到特定的状态描述,我们可以从类似情况中得出适当的动作。(概括)
连续的近似是一种在心理学中通过逐渐增量的步骤来塑造行为的强大技术。它涉及将复杂的行为分解为可管理的块并加强一路上的进步。这种方法已在各个领域被广泛采用,包括教育和行为修改。该概念首先是B.F. Skinner作为他在操作调节方面的工作的一部分,自成立以来就经历了重大发展。让我们首先将复杂的行为分解为较小的步骤。例如,训练狗可能始于让它躺在指挥下。第3步是关于加固的 - 奖励主题越来越接近所需的行为。一旦当前掌握了当前的步骤,请继续进入下一步。该过程一直持续到达到最终目标。塑造心理学在此过程中起着至关重要的作用,这涉及加强逐渐接近预期结果的行为。这就像在行为上玩“温暖,温暖”的游戏。连续近似具有许多应用,包括行为修改和治疗。例如,帮助某人克服对高度的恐惧可能始于看高大的建筑物的照片,然后发展到观看视频,站在脚凳上等等。这种技术在技能获取和学习中也很有用,无论是学习弹吉他还是掌握蛋奶酥制作的艺术。在教育环境中,教师使用连续的近似来帮助学生解决具有挑战性的学科。这不仅是人类 - 连续近似也广泛用于动物训练中,从教导海豚到执行技巧到训练服务犬。该技术具有其优势,例如有效地塑造复杂的行为并适应不同的情况,但它也需要耐心,一致性和仔细的管理。有可能考虑的潜在陷阱,例如加强错误的行为或以操纵方式使用该技术。在整个过程中,同意是一个重要的道德考虑。**在现实情况下使用连续的近似**与不熟悉过程的个人合作时,细微的方法至关重要。让我们探索在行动中连续近似的切实实例,其中理论以迷人的方式与实践融合。*** Skinner的乒乓鸽**:在具有里程碑意义的实验中,Skinner使用连续的近似来教鸽子玩乒乓球。最初将啄在球上并逐渐完善其行为,这些鸟类学会了来回射击。***克服恐惧症**:连续的近似有助于征服令人衰弱的恐惧。一个值得注意的案例涉及一名妇女,通过逐步接触疗法,经过数周的治疗后能够抚摸一只小狗,克服了严重的狗恐惧症。***体育教练**:教练利用连续的近似来帮助运动员掌握复杂的动作。体操运动员,例如,从基本的翻滚到向后的掷骰,背面弹簧,最终是完整的背面弹片。格言走了,“你怎么吃大象?**扩展地平线**随着我们的展望,连续的近似应用程序继续多样化:**人工智能**:研究人员正在利用这项技术来训练机器学习算法。***环境保护**:正在使用连续的近似来促进可持续行为。***神经科学交叉点**:科学家正在研究该技术如何影响大脑可塑性和神经途径,并可能解锁神经系统疾病的新疗法。**新兴趋势*****整合技术**:将连续近似与评估条件结合起来,以形成态度和偏好。***个性化教育**:将连续的近似值纳入自适应学习算法中,以创造量身定制的学习体验。**持久的影响**连续的近似超越了其心理根源,证明自己是理解行为,学习和改变的有效工具。从谦虚的开端到深远的应用程序,这项技术提醒我们,即使是最复杂的挑战也可以通过耐心和持久性克服,这是一次可控的一步。一次咬人!”最终,连续的近似不仅仅是塑造行为,这是关于改变生活,一次是一小步。连续的近似值(也称为塑造)是从操作条件中得出的过程,涉及通过奖励越来越类似于期望的结果来逐渐改变行为的过程。这样做,我们可以有效地指导行为取得积极的结果,一次促进学习和成长。这种方法允许个人以渐进的步骤朝着目标目标发展,每一次奖励的行动都使他们更接近最终目标。在每个步骤中提供的加固都会加强行为,使其更有可能再次发生,并最终导致达成最终所需的行为。这个过程在诸如动物训练之类的领域至关重要,在动物训练等领域,教练们使用连续的近似来教授复杂的行为,从而奖励对目标行动的逐步改进。通过奖励沿途的进步,将复杂的任务分解为较小的步骤,使个人更容易学习新技能,无论是狗取球还是掌握写作的孩子。该技术还用于教导儿童发育挑战和物理疗法,以恢复中风的患者,从而逐渐帮助他们恢复能力。连续近似示例心理学。ADC0804是连续近似ADC的一个示例。连续的近似CBT示例。ADC连续近似示例。皮卡德的连续近似示例。连续的近似ABA示例。连续近似示例的方法。8位连续近似ADC示例。连续的近似模型示例。连续的近似ADC解决了示例。以下哪一项是连续近似的示例。
数字电路和系统的高可靠性得益于多种方法。这些方法确保设计在规定的条件下和预计的使用寿命内发挥其功能。它们涵盖了与电子产品的制造和现场运行相关的不同方面。例如,洁净室控制杂质,工业控制系统实现生产一致性;封装前后的老化和测试确保在对电路施加应力后检测到设计弱点和制造缺陷。在将半导体推向市场之前,所有这些方法都是必要的,但它们并非万无一失。尽管小型化提供了许多优势,但每个新的 CMOS 节点都面临可靠性问题,因为这一趋势正在迅速接近操作和制造的物理极限 [1]。数字系统在其使用寿命的三个阶段可能会出现故障,如图 1 中的浴盆曲线所示 [39]。早期故障被称为早期死亡率;工作寿命期间发生随机故障,磨损故障
虽然该文件现在已经过时,但暂时仍可用。目前正在陆续更新,部分章节已发布,请参阅。二次温度测量指南 https://www.bipm.org/en/committies/cc/cct/guides-to-thermometry。
摘要 — 量子计算机的计算能力对新设计工具提出了重大挑战,因为表示纯量子态通常需要指数级的大内存。如前所述,决策图可以通过利用冗余来减少这些内存需求。在这项工作中,我们通过允许量子态表示中的微小误差来进一步减少内存需求。这种不准确性是合理的,因为量子计算机本身会经历门和测量误差,并且量子算法在某种程度上可以抵抗误差(即使没有误差校正)。我们开发了四种专门的方案来利用这些观察结果并有效地近似决策图所表示的量子态。我们通过经验表明,所提出的方案将决策图的大小减少了几个数量级,同时控制了近似量子态表示的保真度。
摘要。为了理解图表中的基本结构规律,一种基本且有用的技术,称为模块化分解,寻找在外部具有完全相同社区的顶点的子集。这些被称为模块,并且存在线性时间算法可以找到它们。但是,这个概念太严格了,尤其是在处理由现实世界数据引起的图表时。这就是为什么通过允许数据中的一些噪声放松这种情况很重要的原因。然而,概括模块化分解远非显而易见的,因为大多数建议都失去了模块的代数特性,因此大多数不错的算法后果。在本文中,我们介绍了ϵ模型的概念,这似乎是一个良好的折衷,可以维持某些代数结构。在本文的主要结果中,我们表明可以在多项式时间内计算最小的ϵ模型,另一方面,对于最大值 - 模块,可以计算图表的最大模型,如果图形允许使用1-平行的分解,即用ϵ =1。
在研究来自准晶体的薛定谔算子时,人们常常通过周期晶体近似底层动力学结构来研究它。这种方法的例子可以在早期的著作中看到,例如 [ OK85 、 MDO89 、 SB90 、 TFUT91 、 TCL93 ] 和最近的 [ SJ08 、 TGB + 14 、 EAMVD15 、 TDGG15 、 CRH19 、 BBDN20 ]。这是使用具有开放、周期或扭曲边界条件的有限体积近似值来完成的,同时试图最小化边界条件的影响。在本文中,我们处理具有周期势的无限近似值,用于估计来自无限晶格 Z 上非周期原子配置的薛定谔算子。使用 Bloch-Floquet 理论可以相对容易地理解这些无限周期近似值,该理论允许我们通过具有扭曲边界条件的有限体积算子来研究它们。例如,请参阅 [ MDMPAR06 ] 或 [ SV05 ]。我们考虑的薛定谔算子是紧束缚模型的简单情况,由下式给出