本文介绍了微带宽带微波放大器设计和分析所涉及的程序。用于系统设计,仿真,优化和分析,采用了计算机辅助设计(CAD)工具,即Angilent Advance Design System(ADS)。对放大器设备-FLC317MG-4 FET进行了测试,以稳定性测试,并观察到在2至6 GHz频带之间无条件稳定。研究了两个可能的理想匹配电路,以确定具有最大传感器功率增益的最佳匹配电路。观察到,具有平行开路存根的四分之一波变压器比其他匹配电路在频率范围更大(带宽/宽带更大的频率(带宽/宽带)的范围更高。因此,它是使用微丝线进行宽带放大器设计的,并以3.5至4.5 GHz的带宽实现了约9.8 dB至10.118 dB的最大扁平增益。
机电工程中的人工智能:ESPRIT 模型 Mohamed Hedi Riahi、Nadia Ajailia ESPRIT 工程学院 摘要 近十年来,人工智能 (AI) 蓬勃发展,现已涵盖自动化、电力和维护等机电领域,为此我们引入了 ESPRIT 方法。该方法强调工程师需要丰富技能组合,以适应不断变化的环境。这种教育模式将 AI 模块整合到机电工程课程中,符合 CDIO 标准,以培养广泛的 AI 能力。该课程经过精心设计,从基础知识进阶到高级应用和评估,采用主动学习策略提高学生的技术、解决问题和专业技能,最终鼓励全面掌握工程领域的 AI。本文介绍了 ESPRIT 方法,这是一种专为让机电工程师具备必要的 AI 能力而量身定制的教学范式。ESPRIT 机电工程课程中专用 AI 模块的整合符合 CDIO 标准,标志着工程教育取得了重大进步。我们的教学贡献有三方面,涵盖了三年内 AI 模块的设计、执行和评估。该课程采用主动学习策略(标准 8)让学生沉浸在 AI 问题解决中,营造出一种实践参与的环境。课程以结构化的方式展开(标准 3),从第三年的 AI 发现阶段开始,学生将熟悉 Python、AI 库和基础 AI 概念,包括基本分类和回归算法。第二阶段是第四年,重点是应用和强化所获得的知识,重点是 AI 项目的生命周期。学生通过开展一个遵循 AI 项目惯例的小型项目来结束这一阶段。第五年的最后阶段强调实际应用和掌握,最终在 NVIDIA DLI 研讨会上结束,学生有机会获得预测性维护 AI 证书。最后,本文对这种教学方法进行了批判性分析,强调了其实用应用和与学生能力相符的节奏良好的学习轨迹。尽管如此,它强调了在 AI 的理论和实践方面实现对称平衡的必要性,以充分利用其在机电工程中的潜力。关键词
神经影像学在新生儿的评估、治疗和预后判断中起着核心作用。近年来,对发育中大脑的探索一直是科研人员和临床医生研究的一大重点,尤其是磁共振成像(MRI)非侵入性神经影像学方法在展示新生儿和婴儿大脑与行为变化之间的联系方面发挥着重要作用(1,2)。MRI不仅间接反映了分子和细胞水平上观察到的复杂动态过程,而且还提供了有关大脑形态、结构连接、灰质和白质微结构特性以及大脑功能结构的信息(3-5)。通过阅读专业文献,可以利用文献计量学了解神经影像学专业或研究领域的前沿动态和发展趋势,从而帮助科研人员预测未来的研究趋势(6-11)。因此,本研究试图利用文献计量学方法对近十年来新生儿MRI脑神经影像学的研究状况进行统计分析,并评估该领域的研究热点和现状。