摘要 自 1979 年以来,富尔奈斯火山(留尼汪岛)平均每年喷发两次,其中 95% 发生在无人居住的火山口内。然而,熔岩流偶尔会影响岛上人口稠密的地区,例如 1977 年和 1986 年。自 2014 年以来,已经开发了一种综合卫星数据驱动的跨国应对溢流危机的措施,以快速评估熔岩淹没区域和流出距离。2018 年,该协议作为独立软件实施,以提供熔岩流危险图,显示流覆盖和流出的概率与排放率的关系。自 2019 年起,在火山爆发后的最初几个小时内,我们便会将生成的短期灾害地图与当地民防部门共享,以帮助采取缓解措施。科学家、天文台和民防部门之间的多次交流改进了交付的灾害地图,确保了共识、产品实用且可用,并有助于在富尔奈斯火山 (Piton de la Fournaise) 制定有效的缓解策略。在本研究中,我们通过案例研究说明了这一有效的近实时协议,并记录了如何定制生成的短期灾害地图以满足民防部门的需求。
地理空间信息通过提供早期预警信号和提供运营见解,已经证明了其至关重要性。在本文中,我们将介绍另一个应用领域,即收集地理空间信息以用于综合培训和模拟解决方案。政府(即情报界)和商业地理空间数据提供商(例如 Maxar Technologies)为所选的感兴趣区域提供了大量接近实时的数据。例如,如果需要,Maxar 的卫星群每天可以提供多个重访周期。生成的大量地理空间数据是现代大数据分析的典型应用领域,由先进的机器学习模型支持。考虑到这些技术进步,我们将提供一个端到端地理空间平台来消化和分析捕获的数据(例如,通过无人机或卫星)并输出 3D 环境,从而为关键任务规划和培训提供下一代建模和仿真 (M&S) 解决方案。
地理空间信息已证明其至关重要,因为它可以提供早期预警信号和提供作战见解。在本文中,我们将介绍另一个应用领域,即收集地理空间信息以用于综合训练和模拟解决方案。政府(即情报界)和商业地理空间数据提供商(例如 Maxar Technologies)为选定的关注区域提供了大量接近实时的数据。例如,如果需要,Maxar 的卫星群每天可以提供多个重访周期。生成的大量地理空间数据是现代大数据分析的典型应用领域,而现代大数据分析则由先进的机器学习模型支持。考虑到这些技术进步,我们将提供一个端到端的地理空间平台来消化和分析捕获的数据(例如通过无人机或卫星)并输出 3D 环境,从而为关键任务规划和培训提供下一代建模和仿真 (M&S) 解决方案。
1 思克莱德大学土木与环境工程系,格拉斯哥 G1 1XQ,英国;enrico.tubaldi@strath.ac.uk 2 都柏林大学学院土木工程学院,都柏林 D04V1W8,爱尔兰 3 欧洲地震工程培训与研究中心 (EUCENTRE),意大利 27100 帕维亚;ali.ozcebe@eucentre.it (A.G.Ö.);barbara.borzi@eucentre.it (B.B.);francesca.bozzoni@eucentre.it (F.B.);simone.peloso@eucentre.it (S.P.) 4 法国地质调查局 (BRGM),法国 45060 奥尔良; c.negulescu@brgm.fr 5 拉蒙马加莱夫多学科环境研究所 (IMEM),阿利坎特大学,03690 阿利坎特,西班牙;alireza.kharazian@gcloud.ua.es (A.K.);sergio.molina@gcloud.ua.es (S.M.) 6 阿利坎特大学科学学院应用物理系,03690 阿利坎特,西班牙 * 通讯地址:ekin.ozer@ucd.ie
1 思克莱德大学土木与环境工程系,格拉斯哥 G1 1XQ,英国;enrico.tubaldi@strath.ac.uk 2 都柏林大学学院土木工程学院,都柏林 D04V1W8,爱尔兰 3 欧洲地震工程培训与研究中心 (EUCENTRE),意大利 27100 帕维亚;ali.ozcebe@eucentre.it (A.G.Ö.);barbara.borzi@eucentre.it (B.B.);francesca.bozzoni@eucentre.it (F.B.);simone.peloso@eucentre.it (S.P.) 4 法国地质调查局 (BRGM),法国 45060 奥尔良; c.negulescu@brgm.fr 5 拉蒙马加莱夫多学科环境研究所 (IMEM),阿利坎特大学,03690 阿利坎特,西班牙;alireza.kharazian@gcloud.ua.es (A.K.);sergio.molina@gcloud.ua.es (S.M.) 6 阿利坎特大学科学学院应用物理系,03690 阿利坎特,西班牙 * 通讯地址:ekin.ozer@ucd.ie
在当前的数字时代,在许多地方人群计数机制仍然依赖于老式的方法,例如维护登记册,利用人们在入口处进行基于柜台和传感器的计数。这些方法在人们的运动是完全随机的,高度可变和动态的地方失败。这些方法是耗时且乏味的。拟议的系统是针对需要紧急撤离的情况,例如火灾爆发,灾难性事件等。并根据食物,水,检测拥塞等人数做出明智的决定。基于深度卷积神经网络(DCNN)系统可用于接近实时人群计数。系统使用NVIDIA GPU处理器利用并行计算框架来实现通过相机采用的视频提要的快速而敏捷的处理。这项工作有助于构建一个模型来检测CCTV摄像机捕获的头部。通过提供多种场景,例如重叠的头部,头部的部分可见性等,对模型进行了广泛的训练。该系统在估计密集人群的头部数量相当小的时间内提供了很高的准确性。
* 通讯作者:Daniel A. Orringer,医学博士,纽约大学,530 First Ave.,SKI 8S,纽约,NY 10016;电话 212-263-0904,Daniel.Orringer@nyulangone.org。‡ 现地址:美国加利福尼亚州旧金山市加利福尼亚大学旧金山分校神经外科系 作者贡献:TCH、SC-P. 和 DAO 构思了这项研究、设计了实验并撰写了论文,并得到了 BP、HL、ARA、EU、ZUF、SL、PDP、TM、MS、PC 和 SSSK 的协助。作者 CWF 和 JT 制作了 SRH 显微镜。TCH、ARA、EU、AVS、TDJ、PC 和 AHS 分析了数据。TDJ 和 TCH 进行了统计分析。 DAO、SLH-J.、HJLG、JAH、COM、ELM、SES、PGP、MBS、JNB、MLO、BGT、KMM、RSD、OS、DGE、RJK、MEI 和 GMM 提供了手术标本以供成像。所有作者均审阅并编辑了手稿。
2009 年 9 月,太平洋地区部队作战行动研究 (RO) (FOIP) 是欧盟对 J3 FOIP 和 2009 年 Driftnet 行动干部进行应用分析的命令d’eliorer la conducte des op´erations。 RADARSAT-2 有助于提高生产辅助决策的永久利用效率和充分利用 RADARSAT-2 的长期航行能力,并提高航空航天方向的最终效果,并累积相关权力的数量自动识别系统 (SIA) 的附加信号。 ` 一个光辉的经历,额外的改进可能,接触 le Traitement des Donn´ees produites par les capteurs 和 l'orientation des a´eronefs,ont ´et´e cern´ees。
DEMMIN – 使用建模和遥感数据演示生物量潜力评估的试验场 Erik Borg 博士 *) 、Holger Maass *) 、Edgar Zabel **) *) 德国航空航天中心 (DLR)、德国遥感数据中心 (DFD) **) 兴趣小组 Demmin Kalkhorstweg 53 D- 17235 Neustrelitz 与会议 2 相关 摘要:通过“全球环境和安全监测 (GMES)”倡议,欧盟 (EU) 和欧洲航天局 (ESA) 制定了一项雄心勃勃的计划,利用空间遥感技术以及其他数据源和监测系统为欧洲市场提供各种环境、经济和安全方面的创新服务。为了实现这一目标,必须实施自动化的实时和近实时基础设施,以便自动处理遥感数据。空间段和地面段的必要开发和实施已经在推进中。将开发用于获取增值产品的自动化处理链和处理器,特别是开发用于校准和验证遥感任务的测试站点。海报介绍了 DLR 测试站点 DEMMIN(持久环境多学科监测信息网络),它是校准和验证生物质和生物能源增值数据产品、区域规模生物质模型(如 BETHY/DLR)的先决条件,并展示了在实践中使用遥感数据和产品获取生物质潜力的可能性。考虑到这一背景,该演示文稿介绍了 DLR 的测试站点 DEMMIN,包括其特定的区域特征、现场测量仪器和现有数据库。测试站点 DEMMIN 是一个密集使用的农业区,位于德国东北部梅克伦堡-前波美拉尼亚州德明镇附近(距柏林以北约 180 公里)。自 1999 年以来,DLR 与 Demmin 利益集团 (IG Demmin) 一直保持着密切的合作。DEMMIN 的范围从北纬 54°2 ′ 54.29 ″、东经 12°52 ′ 17.98 ″ 到北纬 53°45 ′ 40.42 ″、东经 13°27 ′ 49.45 ″。IG Demmin 由 5 家农业有限责任公司组成,占地约 25,000 公顷农田。该地貌属于上一次更新世 (Pommersches stadium) 形成的北德低地。其特点是冰川河流沉积物和冰川湖沼沉积物以及反映在略微起伏的地貌中的冰碛。土壤基质以壤土和沙壤土为主,与纯沙斑或粘土区域交替出现。试验场的海拔高度约为 50 米,试验场东南部托伦塞河沿岸有一些坡度较大的山坡(12°)。年平均气温为 7.6 至 8.2°C。降水量约为 500 至 650 毫米。由于微地形,气候条件在局部范围内可能存在很大差异。该地区的田地面积很大,平均为 80 - 100 公顷。主要种植的作物是冬季作物,覆盖该地区近 60% 的田地。玉米、甜菜和土豆约占 13%。由于 DLR 与 IG Demmin 的合作,科学家们得到了农民的支持,并为他们的调查提供了重要信息。例如,数字准静态数据(如土壤图、地块图)或数字动态数据(如产量图和应用图)。除了数据库之外,DEMMIN 还实现了农业气象网络,它可以自动测量影响成像过程的所有农业气象参数,同时进行空间或机载遥感。
已经开发了一种移动专业填充系统,能够探测从表面到30公里以上的大气。移动专业填充系统(MPS)结合了地面仪器,包括五个梁924-MHz雷达风能填充器,无线电声音系统和两个被动微波探空仪,以及用于气象学卫星数据的接收器和处理器。通过将基于地面传感器套件与气象卫星套件产生的表面数据和利润结合在一起,从而从表面到最高的卫星发声水平产生了备件。算法会产生温度,湿度,风速和其他气象变量的声音。将来自单独源数据的数据组合的方法不是特定的站点,也不需要先验信息。国会议员具有各种应用的潜力,包括对中尺度地区研究和运营的气象变量的详细分析,例如区域污染研究和严重的风暴预测。本文介绍了合并卫星和基于地面遥感系统数据的方法,并从单个传感器和组合声音的一系列测试中提出了结果。组合声音的准确性似乎与Rawinsonde相吻合,除了卫星发声高度的风速外。国会议员在几个不同的气候中成功运作:在加利福尼亚州克莱蒙特的洛杉矶自由激进实验中,以及在新墨西哥州的White Sands导弹范围进行的测试;科罗拉多州伊利;英尺西尔,俄克拉荷马州;和弗吉尼亚州的沃洛普岛。