市场研究公司 Omdia 在其《SiC 和 GaN 功率半导体报告——2020 年》(见第 74-75 页)中指出,受混合动力和电动汽车 (HEVs/EVs)、电源和光伏 (PV) 逆变器需求的推动,碳化硅 (SiC) 和氮化镓 (GaN) 功率半导体市场预计将在 2021 年超过 10 亿美元,因为它正迅速从初创公司主导的行业发展为由大型知名功率半导体制造商主导的行业。例如,三菱电机现已推出其第二代全 SiC 功率模块,采用新开发的低功耗工业用 SiC 芯片(第 15 页)。此外,在美国空军研究实验室 (AFRL) 的一项第一阶段小型企业技术转移研究 (STTR) 项目的资助下,结构材料工业公司 (SMI) 开发了一种用于 4H-SiC 的低温化学气相沉积 (CVD) 工艺,可实现用于高压功率器件的厚外延层的更高速率生长(同时缩短工艺周期和设备磨损)(第 14 页)。与此同时,SMI 还与纽约州立大学 (SUNY) 奥尔巴尼理工学院合作,获得了美国能源部授予的第一阶段 STTR 合同,以开发普遍的制造基础设施 - 包括改善大晶圆金属有机化学气相沉积 (MOCVD) 均匀性 - 用于在高电流和高电压 (>20A/>600V) 下运行的 GaN,用于电动汽车电力电子设备(第 16 页)。正在推进 GaN 器件功能的制造商包括 EPC,该公司已推出其最新的 100V eGaN FET 系列,面向自动驾驶汽车的 LiDAR 等应用(第 18 页)。GaN 器件在电源应用(例如消费电子产品的快速充电器)中的应用持续激增(尤其是随着性能的提高)。例如,在 Apple iPhone 12 预计于今年晚些时候发布之前,移动配件品牌 Spigen PowerArc 已在新款 20W ArcStation Pro 中使用了 Navitas 的 GaNFast 电源 IC。与此同时,中国的 OPPO 已采用 GaNFast 电源 IC,用于据称是最小、最薄、最轻的 110W 智能手机、平板电脑和笔记本电脑快速充电器(第 19 页)。除了通过向制造合作伙伴 Nexperia 授予许可来增加收入外,Transphorm 还扩展了其高压 GaN 电源转换设备产品组合,旨在推动快速充电电源适配器的普及(第 20 页)。GaN Systems 宣布推出一款新的参考设计,用于包括手机和笔记本电脑在内的消费电子产品中的高功率密度 65W 充电器(第 21 页)。Mark Telford,编辑 mark@semiconductor-today.com该公司还发布了一份白皮书,展示了其 GaN 器件的可靠性,超过了 JEDEC 和 AEC-Q101 测试规范的标准。在新加坡,IGSS GaN (IGaN) 正在建立一个 Epi 中心,作为 4-8 英寸晶圆 GaN MOCVD 的商业和全球联合实验室,将于 2021 年中期投入运营(第 22 页)。最近,就在 9 月 29 日,总部位于荷兰的 NXP Semiconductors 在其位于亚利桑那州钱德勒的工厂开设了新的 8 英寸晶圆 GaN 晶圆厂,专门用于蜂窝基础设施的 5G RF 功率放大器。新晶圆厂已经通过认证,初始产品正在市场上迅速推广,预计将在 2020 年底达到满负荷生产(下一期新闻页面将全面报道)。
七、境内外会计准则下会计数据差异 1、按照国际财务报告准则与中国会计准则披露的财务报告中净利润和净资产差异 □ 适用 不适用 公司报告期不存在按照国际财务报告准则与中国会计准则披露的财务报告中净利润和净资产差异情况。 2、按照境外会计准则与中国会计准则披露的财务报告中净利润和净资产差异情况 □ 适用 不适用 公司报告期不存在按照境外会计准则与中国会计准则披露的财务报告中净利润和净资产差异情况。 八、季度财务指标
保留所有权利。未经 PUB 事先许可,不得以任何形式或任何手段(电子、机械、影印、录音或其他方式)复制、存储于检索系统或传播本出版物的任何部分。
后期:Bilal M.,Lopez-Aguayo S.,Szczerska M.,Madni H.,使用等离子体材料和磁性流体基于光子晶体纤维的多功能传感器,OSA Continuum vol。61,ISS。 35(2022),pp。 10400-10407,doi:10.1364/optcon.456519©2022 Optica Publishing Group。 只能为个人使用而制作一张或电子副本。 系统的复制和分布,本文中的任何材料的复制,以收费或出于商业目的或本文内容的修改。61,ISS。35(2022),pp。10400-10407,doi:10.1364/optcon.456519©2022 Optica Publishing Group。只能为个人使用而制作一张或电子副本。系统的复制和分布,本文中的任何材料的复制,以收费或出于商业目的或本文内容的修改。
莱布尼茨 IHP 莱布尼茨高性能微电子研究所 Leibniz-Institut für innovative Mikroelektronik 地址 Im Technologiepark 25 15236 Frankfurt (Oder) 网站:www.ihp-microelectronics.com 联系人 Dr. René Scholz(MPW 和服务)电子邮件:scholz@ihp-microelectronics.com 电话:+49 335 5625 647 传真:+49 335 5625 327
摘要Kava(Piper Methysticum)是Pepper家族中的一种灌木,它原产于南太平洋岛屿。该根在娱乐和治疗目的传统上被用作饮料,它以镇静,抗焦虑和社交能力的促进者而闻名。它在其特有地区以外的地区广受欢迎,并且已广泛使用。由于不同的药理学作用与Kava的不同品种有关,并且由于可以将品种与组成品的特征链接kavalactone和Flavokavains相关,因此对这些成分的测量可以促进该工厂的安全有效使用。在本申请说明中,提出了一种用于准确预测使用HoribaAqualog®和A-TEEM技术进行的光谱吸光度和荧光测量的Kava根主要成分量的方法。使用一组具有已知化学性质的Kava样品建立了部分最小二乘回归的化学计量模型,并讨论了该模型的改进和适当的应用范围。
航空航天领域与汽车或自动化等其他信息物理系统领域非常相似,需要新的方法和途径来提高性能并降低成本,同时保持安全水平和可编程性。虽然异构多核架构看起来很有前景,但除了认证问题之外,还需要复杂的工具链和编程流程来充分发挥其潜力。ARGO(WCET-异构并行系统基于模型的应用程序的感知并行化)项目正在通过提供集成工具链来应对这一挑战,该工具链实现了一种创新的整体方法,用于在基于模型的工作流程中对异构多核系统进行编程。基于模型的设计提升了系统建模水平,并通过执行这些模型来验证和确认设计决策,从而促进了仿真。作为案例研究,ARGO 工具链和工作流程将应用于基于模型的增强型近地警告系统 (EGPWS) 开发。EGPWS 是当前飞机中随时可用的系统,它利用高分辨率地形数据库、全球定位系统和其他传感器为飞行路径上的障碍物和地形提供警报和警告。在对 ARGO 项目针对异构多核架构的基于模型的开发方法进行简单介绍后,将介绍 EGPWS 和 EGPWS 系统建模。
从美国宇航局的太空发射系统 (SLS) 部署后,近地小行星 (NEA) 侦察兵任务将前往一颗小行星进行近距离飞行并对其进行成像,主要推进器为面积为 86 平方米的太阳帆。太阳帆是一种大型镜面结构,由轻质材料制成,可反射阳光来推动航天器。持续的太阳光子压力可提供推力,而不需要传统化学和电力推进系统所使用的笨重、消耗性的推进剂。NEA 侦察兵由美国宇航局的马歇尔太空飞行中心 (MSFC) 和喷气推进实验室 (JPL) 开发,基于行业标准的立方体卫星外形。该航天器尺寸为 11 厘米 x 24 厘米 x 36 厘米,重量不到 14 公斤。从太空发射系统 (SLS) 部署后,太阳帆将展开,航天器将开始其 2.0 到 2.5 年的旅程。在小行星飞掠前约一个月,NEA Scout 将搜索目标并开始其接近阶段,使用无线电跟踪和光学导航相结合的方式,对目标进行相对缓慢的飞掠(10-20 米/秒)。本文将介绍任务概要、帆船、任务设计以及深空运行的最初几个月。
表4进一步凸显了每种情况下实现生物多样性净增益所需的栖息地区域的差异,这是由于所采用的方法而不同的。在非常低的独特性栖息地(在情景2中)创建这些潮间带的栖息地(在场景2中)会产生更多的生物多样性单位,而不是将这些潮间带的栖息地增强到良好的状态(在情景1中),由于与“良好”状态和划分基线相关的困难和时间风险,因此存在的困难和时间风险,虽然在现场开发影响之前创建相同的栖息地会在方案3中相对于其他两个方案3产生最多的单位,因为与创建相关的风险降低了。