上下文。詹姆斯·韦伯(James Webb)太空望远镜(JWST)捕获了有史以来最清晰的红外图像,这是一个原型中等辐照的光子主导区域(PDR),它完全代表了大多数UV-rumumination-the Milecular Soleculin ass the Milecular速度和星星形成的星座。目标。我们研究了一个巨大的恒星在分子云边缘发出的远 - 硫酸酯(FUV)辐射的影响,就光蒸发,电离,解离,H 2激发和粉尘加热而言。我们还旨在限制PDR边缘的结构及其照明条件。方法。我们使用Nircam和Miri获得了17个宽带和6个窄带地图,在宽光谱范围为0.7至28 µm。我们绘制了灰尘发射,包括芳香和脂肪族红外(IR)带,散射光和几个气相线(例如,Paα,Brα,H 2 1-0 S(1)在2.12 µm时)。为了进行分析,我们还将1.1和1.6 µm的两个HST-WFC3图与HS-Stis光谱观测到Hα线相关联。结果。我们以0.1至1''的角度分辨率探测了马头边缘的结构,并解决了其空间复杂性(相当于2×10-4至2×10 - 3 PC或40至400 au,在400 pc的距离处)。我们检测到一个微弱的横纹特征网络,该网络垂直于PDR前面延伸至Nircam的H II区域,Miri和Miri对纳米谷物发射敏感的过滤器以及1.1 µm的HST滤波器中的敏感,从而散布于较大的晶粒散布的光线。这确实可能是第一次检测到蒸发流中灰尘颗粒的夹带。在PDR的照明边缘,H 2的1-0 s(1)线的丝状结构在尺度上呈现出众多尖锐的子结构。与尘埃发射相比,沿边缘沿狭窄的层(宽度约为1'',对应于2×10 - 3 pc或400 au),与灰尘发射相比,H 2发射过量。电离正面和解离前在PDR的外边缘后面出现在距离1-2'',并且似乎在空间上重合,表明中性原子层的厚度很小(低于100 au)。所有宽带图都呈现出照明边缘和内部区域之间的颜色变化。在与天空平面相比,照亮的星σ-orionis略有倾斜的情况下,这可以通过灰尘衰减来解释,从而使马头以倾斜的角度从后面照亮。与Hα,PAα和BRα线中测得的排放的预测偏差也表明灰尘衰减。使用非常简单的模型,我们使用数据来得出灭绝曲线的主要光谱特征。在3 µm处的灭绝少量可能归因于在密集区域形成的晶粒上冰冷的H 2 O层。我们还将衰减曲线从PDR衍生为0.7至25 µm。在跨越马头内部区域的所有视线中,尤其是在IR峰位置周围,在JWST的整个光谱范围内,灰尘衰减似乎不可忽略。
20 世纪早期之前,物理学语言建立了一个框架,理论上,所有现象对于近距离观察者来说都是可量化和可预测的。然而,随着量子力学的发现,这种确定性的世界观发生了根本性的改变,量子力学提出了真正的随机性和不可预测性。在过去的一个世纪里,许多突破性的实验都证明了这一基本定律,这些实验主要以光(量子)为中心。如今,人们越来越关注单光子的实际应用。在本论文中,我们研究了单光子的起源,并使用非线性光学过程设计了实验。深入研究细节,我们使用长度为 10、20 和 30 毫米的 ppKTP 晶体对二次谐波的产生进行了研究,并比较了结果,指出效率和温度带宽随长度变化的趋势相反。此外,我们还利用 BBO 晶体探索了下转换光子的数值和实验空间特性。还添加了一些结果来解释从相关光子对获得纠缠的过程。
摘要:脑机接口 (BCI) 系统包括信号采集、预处理、特征提取、分类和应用阶段。在 fNIRS-BCI 系统中,深度学习 (DL) 算法在提高准确性方面起着至关重要的作用。与传统的机器学习 (ML) 分类器不同,DL 算法无需手动提取特征。DL 神经网络会自动提取数据集中的隐藏模式/特征来对数据进行分类。在本研究中,从 20 名健康参与者那里获取了手握(闭合和张开)两类运动活动数据集,并将集成上下文门网络 (ICGN) 算法(提出)应用于该数据集以提高分类准确性。所提出的算法从过滤后的数据中提取特征,并根据网络中先前单元的信息生成模式。因此,基于数据集内生成的类似模式进行分类。将所提出的算法的准确性与长短期记忆 (LSTM) 和双向长短期记忆 (Bi-LSTM) 进行了比较。所提出的 ICGN 算法的分类准确率为 91.23 ± 1.60%,显著(p < 0.025)高于 LSTM 和 Bi-LSTM 分别实现的 84.89 ± 3.91 和 88.82 ± 1.96。使用 30 名受试者的开放访问三类(右手和左手手指敲击和优势脚敲击)数据集来验证所提出的算法。结果表明,ICGN 可有效用于基于 fNIRS 的 BCI 应用中二类和三类问题的分类。
目前,溶酶体被描述为高级细胞器,在细胞稳态中起着关键作用,并介导了各种生理过程,例如蛋白质降解和质膜修复。1,2个证据表明,溶酶体中水解酶的异常活性与疾病的发病机理,例如储存障碍,癌症,神经退行性疾病和心脏疾病。3 - 5,其中lyso- somes中的b-乳糖苷酶(b -gal)参与了糖结合物的分解代谢,其异常水平与原发性卵巢癌的发生和进展有关,使溶酶体的糖尿病癌症成为可靠的诊断和诊断的动力学诊断。6 - 10对实时途径中溶酶体中水解酶的现场监测将为溶酶体酶在疾病进展中的详细作用提供见解,并进一步有助于早期诊断和治疗策略的发展。11 - 13
通过时间分辨的吸收和荧光光谱研究,研究了荧光日二烯(FDAE)衍生物的荧光二乙烯(FDAE)衍生物的激发态动力学的抽象近红外两光子吸收和激发态动力学。用量子化学计算进行预筛选预测,封闭环异构体中用甲基噻酯基(MT-FDAE)的衍生物具有两光子的吸收横截面 - 大于1000 GM,这是通过Z-SCAN的测量和激发功率依赖于瞬时吸收的实验证实的。比较在一光子和同时的两光子激发条件下瞬时吸收光谱的比较表明,在CA的时间表上,在三个途径上停用了较高激发态的MT-FDAE的闭合环异构体。200 fs:(i)比单光过程,(ii)内部转换到s 1状态的环反应反应的效率更高,(iii)放松到与s 1状态不同的较低状态(s 1'状态)。时间分辨的荧光测量结果表明,该S 1'状态被放松到S 1状态,具有较大的排放概率。在本工作中获得的这些发现有助于以两光子的方式扩展FDAE到生物学窗口的开关切换能力,并应用于超分辨率荧光成像。
可生物降解的纳米材料可以显着改善纳米医学的安全性。锗纳米颗粒(GE NP)是作为生物医学应用的有效光热转化器而开发的。ge NP由飞秒激光在液体中合成的液体通过氧化机制迅速溶解在生理样环境中。GE纳米颗粒的生物降解在体外和正常组织中保存在半衰期短达3.5天的小鼠中。GE NP的生物相容性通过血液学,生化和组织学分析在体内确定。在近红外光谱范围内GE的强烈光吸收可在静脉注射GE NP后对体内植入的肿瘤进行光热治疗。光热疗法导致EMT6/P腺癌肿瘤生长的3.9倍降低,而小鼠的存活显着延长。在纳米材料的静脉内和肿瘤内施用后,GE NP(808 nm处的7.9 L G - 1 cm-1)的出色质量渗透使骨骼和肿瘤具有光声成像。因此,强烈吸收近红外的生物降解纳米材料对晚期治疗学有希望。
摘要:抑制作用受损,这是注意力缺陷多动障碍(ADHD)的核心症状,显着影响个人的整体生活质量。然而,基本机制尚不清楚。,我们在大学生中进行了情感上的GO/Nogo任务,以探索多动症与高度敏感人(HSP)特征之间的潜在相关性。层次的多元回归分析表明,委员会对愤怒面孔做出反应时增加的错误可以通过HSP特征来更好地解释,而不是仅通过ADHD特征来解释。此外,我们建议右前额叶皮层中的活动增强与这些反应抑制困难有关。这项研究的结果与先前研究的结果保持一致,这表明ADHD特征加剧了涉及愤怒面孔的任务中的抑制作用抑制困难。但是,我们强调了与仅ADHD特征相比,HSP特征的重要作用。这强调了考虑或不存在ADHD诊断和ADHD性状的强度以及在支持具有明显ADHD特征的个体时的HSP特征的重要性。
Glasgow, G1 1XL, UK Corresponding authors, e-mail: * arnaoutakis@hmu.gr , # bryce.richards@kit.edu Abstract Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics.但是,所需的超高光强度和灯笼离子的狭窄吸收带限制了有效的太阳能利用率。在本文中,我们报告了令人兴奋的上转换器,其浓度的阳光在通量密度高达2300个太阳下,辐射仅限于硅带隙以下的光子能量(对应于波长= 1200 nm)。上转换到= 980 nm是通过在荧光聚合物基质中使用六角形的Erbium掺杂钠yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium。上转换具有与辐照度的非线性关系,因此在高辐照度下,在过程变为线性的情况下发生阈值。对于β -Nayf 4:25%ER 3+,我们在320个太阳下浓缩的阳光下发现了两个光子阈值。值得注意的是,该阈值低于相应的激光激发,并且可能与所有共同激发的ER 3+离子水平和激发的吸收有关。这些结果突出了一条利用光伏的太阳光谱的途径。简介上转换(UC)是一个非线性光子过程,可以添加来自两个或多个较低能量光子的能量,从而导致单个较高能量光子的发射[1]。第一个激发态通过基态吸收(GSA)填充。uc已在激光器[2],生物医学成像[3],[4],抗爆炸[5],[6],塑料回收[7]和太阳能收获[8],[9],[9],[10]中进行了研究。对于光伏,这可能是绕过太阳能光谱中与子频带光子相关的太阳能电池传输损失的一种有前途的方法[11]。计算表明,在理想情况下,UC可以提高单连接太阳能电池的理论上效率(Shockley-Queisser)极限从33%到48%[11]。有效的稀有地球[12],[13],[14]上转换器的外部转换器高达9.5%,外部UC量子产量(EUCQY),这是外部发射与入射光子的比率。稀有的稀土上转换器具有较高的近红外(NIR)Eucqy的表现最高的硅[14],[15]和钙钛矿太阳能电池[16]。在三价灯笼离子中,UC通过部分填充的4F壳中的辐射过渡发生。额外光子的激发态吸收(ESA)可以产生更高的激发态。然而,可以通过第一个激发态以第一个激发态的能量传递向上转换(ETU)来进行更有效的过程,尤其是在较低的激发能力密度下,如图1(a)。一个离子的能量被捐赠给附近的离子,将其推广到更高的亚稳态状态,而敏化剂的能量又回到基态。
摘要:功能性近红外光谱(FNIRS)是一种创新的神经影像学方法,比其他常用方式具有多种优势。这项叙述性综述研究了这种方法对神经退行性疾病研究的潜在贡献。涉及患有阿尔茨海默氏病(AD)的患者,轻度认知障碍(MCI),前颞痴呆症(FTD),帕金森氏病(PD)或肌营养性侧面硬化症(ALS)和健康对照组的研究。总的来说,有MCI个体的前额叶皮层可能会涉及补偿机制以支持大脑功能下降。建议向右转移,以弥补认知能力下降过程中左前额叶能力的损失。同时,一些研究报告了MCI和早期AD中补偿机制的失败。缺乏适当的血液动力学反应可能是神经刺激的早期生物标志物。一份评估FTD的文章与AD相比显示出异质的皮质激活模式,表明FNIRS可能有助于这些条件的挑战性区别。关于PD,有证据表明认知资源(尤其是执行功能)被招募以弥补运动障碍。至于ALS,即使在没有可测量的认知障碍的情况下,FNIRS数据也支持在ALS中的运动外网络的参与。
摘要。窄带光进行是用于材料分析和传感的重要测量技术,例如非分散红外传感技术。已经探索了光活性材料工程和纳米光子过滤方案,以实现波长选择的光电检测,而大多数设备的响应性带宽大于操作波长的2%,从而限制了感知性能。在Au/Si Schottky纳米结中,通过实验证明了带宽小于0.2%的近红外照相检测。通过仔细尾随纳米结构中的吸收性和辐射损失,在1550 nm的波长下获得了光电响应的最小线宽。使用波纹的AU膜在芯片上实现了多个功能,包括窄带共振,用于传感和光电检测的光收集以及用于热电子发射的电极。受益于与原位光电传感信号和超核会共振的原位光电转换,通过简单的强度询问进行了独立的芯片生物传感,在Glucose解决方案的浓度下降至0.0047%,用于Glucose解决方案和150 ng ng ml for Rabbit Bitbit Igg。在现场传感,光谱,光谱成像等中应用的这种技术的有希望的潜力。