抽象的聚合物纳米复合材料已被广泛用作吸附剂,以在最终的仪器分析之前从环境水中提取污染物。这些材料具有高度的用途,可以通过充分选择聚合物/纳米材料组合来适应给定的分析问题。通过在实验室和可以获得它们的不同格式(颗粒,膜,整体或纤维)中的不同格式(颗粒,膜,整体或纤维)来增强材料的适应性。本文提供了一般概述聚合物纳米复合材料的潜力,强调了实际方面(合成和微挖掘技术)。它旨在通过在样本制备中显示这些材料几乎无尽的可能性以及在不久的将来的主要趋势来激发研究人员。
纠缠仍然是基于通信和信息处理协议(例如量子密钥分布(QKD)[1-3],超密集编码[4]和状态传送[5]的许多新兴量子技术的关键要素。迄今为止,基于引导波和自由空间传输的可见和电信波长的启用这些协议的主力是光源[6]。近年来,卫星到地面链接已成为长距离QKD的最有前途的选择[7-12]。卫星到地面QKD的挑战是在日光下的可操作性有限,因为电信和可见频带的背景过多[13]。因此,迄今为止,大多数示例都依赖于夜间操作,只有少数例外[14]。此外,在日光下,基于纠缠或与设备无关的方法仍有待证明。设备独立的实现是指关于QKD设备的工作方式或它们基于哪种量子系统的方式的假设[15,16]。此外,基于卫星的推动通信网络正在导致QKD的范式转移到与设备无关的实现,这些实现必须同时支持FILBRE和自由空间光学链接。2至2.5 µm光谱区域正迅速成为高度有希望的光学电信带,比传统的电信C波段(1550 nm)具有显着优势,这对于在此波段带中的量子源和测量能力至关重要。例如,已经证明2- µm条带在中空核心光子带隙(HCF)[17]中具有最小的损失,这是由于其超低的非纤维性而导致的一种新兴传输 - 纤维替代方案,并且提供了最低的可用延伸度。使用HCFS [18]证明了2- µm区域中2.5 dB/km的损失[18],其范围可进一步减少,超过0.14 dB/km>的最小衰减效果。
Xtend 即将根据五角大楼合同交付 Skylord Xtender sUAS 2021-05-25 16:54:19.401 GMT (Janes) 根据最近的一份合同,Xtend 将很快开始向五角大楼交付其 Skylord Xtender 小型无人机系统 (sUAS)。 2021 年第三季度,该公司将向五角大楼战术单位交付数十套 Xtender 战术 sUAS 平台原型系统进行作战测试 要点 根据最近的一份合同,Xtend 将很快向五角大楼交付其 Skylord Xtender sUAS 的原型 Xtender 是一种专为近距离作战和城市战而打造的室内 ISR 解决方案 根据最近的一份合同,Xtend 将很快开始向五角大楼交付其 Skylord Xtender 小型无人机系统 (sUAS)。 2021 年第三季度,该公司将向五角大楼战术部队交付数十套 Xtender 战术 sUAS 平台原型系统,用于作战测试和评估 (OT&E)。该合同于 2021 年初颁发,由国防部负责特种作战/低强度冲突 (SO/LIC) 的助理部长、不规则战争技术支持局 (IWTSD) 颁发。Xtend 发言人于 5 月 24 日表示,该公司参与了该合同的竞标,但他没有提供更多细节。Xtend 业务开发和销售副总裁 Ido Bar-On 于 4 月 20 日告诉 Janes,Xtender 是一种室内情报、监视和侦察 (ISR) 解决方案,专为近距离战斗和城市战争而设计。Xtender 提供了一种独特的以人为本的机器界面技术,使操作员能够从安全距离远程干预危险情况。Xtender 操作员佩戴虚拟现实 (VR) 护目镜来查看飞机的视频源。 Bar-On 表示,这让操作员能够感受到飞机的一部分。操作员有一个手动控制器来指挥飞机,Bar-On 表示,这与任天堂 Wii 视频游戏系统使用的控制器类似。Xtender 在 2 月 5 日至 3 月 5 日于佐治亚州本宁堡举行的 2021 年美国陆军远征勇士实验 (AEWE) 上进行了演示。
国防部对参与 CAS 任务的部队的训练计划进行评估,但 GAO 确定了国防部可以在两个方面改进工作。首先,陆军和海军陆战队尚未系统地评估为提供目标信息的地面观察员提供定期训练的有效性,因为缺乏用于跟踪训练数据的集中系统,也没有指定实体来监控全军的训练。其次,2017 年至 2019 年间,使用合同飞机进行训练的情况大幅增加,但国防部尚未充分评估使用非军用合同飞机为 CAS 训练空中管制员的情况(见图)。美国政府问责署发现,美国军用飞机和合同飞机之间的差异(例如空速)可能导致飞机在某些类型的训练活动中的能力不一致。如果不对 CAS 训练进行全面评估,国防部就无法保证其部队已准备好安全有效地执行 CAS 任务。
国防部对参与 CAS 任务的部队的训练计划进行了评估,但 GAO 确定了国防部可以在两个方面改进工作。首先,由于缺乏用于跟踪训练数据的集中系统以及没有指定实体来监控全军的训练,陆军和海军陆战队尚未系统地评估为提供目标信息的地面观察员进行定期训练的有效性。其次,2017 年至 2019 年间,使用合同飞机进行训练的情况大幅增加,但国防部尚未全面评估使用非军用合同飞机训练空中管制员进行 CAS 的情况(见图)。GAO 发现,美国军用飞机和合同飞机之间的差异(例如空速)可能导致飞机在某些类型的训练活动中的能力不一致。如果不对 CAS 训练进行全面评估,国防部就无法保证其部队已准备好安全有效地执行 CAS 任务。
国防部对参与 CAS 任务的部队的训练计划进行了评估,但 GAO 确定了国防部可以在两个方面改进工作。首先,由于缺乏用于跟踪训练数据的集中系统以及没有指定实体来监控全军的训练,陆军和海军陆战队尚未系统地评估为提供目标信息的地面观察员进行定期训练的有效性。其次,2017 年至 2019 年间,使用合同飞机进行训练的情况大幅增加,但国防部尚未全面评估使用非军用合同飞机训练空中管制员进行 CAS 的情况(见图)。GAO 发现,美国军用飞机和合同飞机之间的差异(例如空速)可能导致飞机在某些类型的训练活动中的能力不一致。如果不对 CAS 训练进行全面评估,国防部就无法保证其部队已准备好安全有效地执行 CAS 任务。
Venezia 让您能够更进一步:轻松接触宫旁和阴道内的肿瘤。高级妇科涂药器不仅可用于治疗 IIIB 宫颈癌患者,还可治疗 IB、IIA/B、IIIA 和 IVA 期肿瘤。一个涂药器可以治疗多个肿瘤阶段,因此您可以将同一种涂药器类型用于不同的患者群体。两个月牙形卵形涂药器相互咬合时形成一个环,让您能够受益于串联涂药器和卵形涂药器的优势,以及环的剂量分布——高剂量
摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。
幻影回声:五眼 SDA 实验,旨在检查 GEO 会合和近距离操作 Simon George、Andrew Ash 英国国防科学技术实验室 Travis Bessell 澳大利亚国防科学技术组 James Frith 美国空军研究实验室 Lauchie Scott 加拿大国防研发中心 Jovan Skuljan 新西兰国防技术局 Roberto Furfaro、Vishnu Reddy 美国亚利桑那大学 摘要 2020 年 2 月,两艘航天器在地球静止轨道 (GEO) 进行了首次商业卫星服务会合对接,为了解飞行器的动态并使用地面和天基传感器观察此类活动提供了独特的机会。作为更广泛活动的一部分,该活动旨在展示如何将盟军传感器和处理工具集成到基于云的联合处理工作流中,以提高盟军航天器在地球同步轨道的太空安全,在五眼联盟 (FVEYs) 国家国防科学技术 (S&T) 组织开展的受限观察活动中,服务飞行器和客户飞行器均被观察为替代目标。这项名为“PHANTOM ECHOES”的实验活动通过技术合作计划 (TTCP) 下开展的研究活动,汇集了英国、美国、加拿大、澳大利亚和新西兰的能力。本文概述了 PHANTOM ECHOES 活动第一阶段开展的活动;描述 FVEY 的空间领域感知 (SDA) 工具在数据处理网络基础设施中的开发和集成进展,以及任务扩展飞行器-1 (MEV-1) 从发射到 2020 年 2 月 25 日成功与 Intelsat-901 对接的真实世界和模拟观测结果。本文还介绍了 PHANTOM ECHOES 实验的第二阶段,该实验目前正在与任务扩展飞行器-2 (MEV-2) 任务一起进行,FVEY 的 SDA 科技界正在利用该实验来积累经验并探索深空的替代替代目标,这些目标呈现出与保护地球静止轨道盟军航天器相关的任务概况。 1. 简介 地球静止轨道 (GEO) 区域被各种各样的联盟航天器占据,它们为民用和军用目的的通信、监视和导航提供关键服务。虽然地球同步轨道 (GEO) 一直因其独特的轨道几何形状而备受推崇,但地球同步轨道 (GEO) 中常驻空间物体 (RSO) 数量的不断增加对飞行安全和关键高价值资产 (HVA) 的保护产生了相关影响。随着该地区人口密度的增加,有意近距离活动的能力也日趋成熟。此外,推进和自主能力的进步也
量子自旋霍尔绝缘体的特征在于二维 (2D) 内部的带隙和螺旋状一维边缘态 1 – 3。在螺旋边缘态中诱导超导可产生一维拓扑超导体,拓扑超导体是许多拓扑量子计算提案的核心,是一种备受追捧的物质状态 4。在本研究中,我们通过将单层 1T ′ -WTe 2(量子自旋霍尔绝缘体 1 – 3)放置在范德华超导体 NbSe 2 上,报告了范德华异质结构中超导性和量子自旋霍尔边缘态的共存。使用扫描隧道显微镜和光谱 (STM/STS),我们证明 WTe 2 单层由于底层超导体而表现出邻近诱导的超导间隙,并且量子自旋霍尔边缘态的光谱特征保持不变。综上所述,这些观察为 WTe 2 中量子自旋霍尔边缘态的邻近诱导超导提供了确凿证据,这是在这种范德华材料平台上实现一维拓扑超导和马约拉纳束缚态的关键一步。当代人们对拓扑超导体的兴趣是由其无间隙边界激发的潜在应用驱动的,这些激发被认为是具有非阿贝尔统计特性的突发马约拉纳准粒子 5 – 8 。实现拓扑超导的一条途径是实现本征无自旋 p 波超导体 9 。一个强有力的替代方法是使用传统的 s 波超导体通过超导邻近效应在拓扑非平凡状态下诱导库珀配对,从而产生有效的 p 波配对 10 。这种方法最近已被用于在超导衬底上生长的外延三维拓扑绝缘体膜中设计二维(2D)拓扑超导11,12,和通过在埋置外延半导体量子阱中接近二维量子自旋霍尔系统设计一维拓扑超导13,14。虽然这些演示标志着重要的里程碑,但在范德华材料平台上探索拓扑超导具有明显的优势。使用分层二维材料可以使二维量子自旋霍尔边缘在垂直异质结构中接近,从而绕过横向接近效应几何的长度限制。此外,表面和边缘易于进行表面探针探测,从而可以检测和基础研究一维拓扑超导态的特征。本征量子自旋霍尔态已在 1T ′ -WTe 2 单层中得到实验证明(参考文献 1 - 3、15 - 17),这与早期的理论预测 18 一致。