涉及各种AC3VI3ES的能量流涉及的化学Rec3ON构成了被称为细胞代谢的过程。细胞代谢由一个复杂的化学Rec3ON网络组成,该网络从环境中捕获能量和原材料,并可以将其更改为用于维持细胞的形式。在这种细胞代谢,ATP和质子MO3VE力(PMF)中,正在产生和U3LLEL,因此代谢的重点。异养或化学养育代谢需要为细胞CONS3TENTENT的生产供应富含能量的有机物质,并作为用于产生ATP的化学能源的来源。此Rec3On Essen3ly涉及富含能量的氧气3ON通过代谢途径释放出足够能量的代谢途径,从而将有机分子降低到氧化的终产物中,以耦合到ATP的转换3ON。因此,这是指在高度氧化态的外部分子必须充当最终电子受体,其还原的重新分子平衡了INI3AL有机底物分子的氧气
生物质衍生化学品的氢化对于生产生物燃料和增值化学品具有重要意义。生物质还原的热化学过程通常使用氢气作为还原剂,在高温和高压下进行。本文,作者研究了 5-羟甲基糠醛 (HMF) 直接通电还原为生物聚合物前体 2,5-双(羟甲基)呋喃 (BHMF)。注意到先前关于这种转化的报告中电流密度有限,因此研究了一种由三元金属纳米树枝状晶体与阳离子离聚物混合而成的混合催化剂,后者旨在提高局部 pH 值并促进表面质子扩散。该方法在使用专为 p-d 轨道杂化设计的 Ga 掺杂 Ag-Cu 电催化剂实施时,可控制对 BHMF 的选择性,在 100 mA cm −2 时实现 58% 的法拉第效率 (FE) 和 1 mmol cm −2 h −1 的生产速率,后者的速率与之前最好的报告相比翻了一番。
还原的石墨烯(RGO)是一种广泛研究的电极材料,用于储能,但是,其在化学还原过程中的强大重新组合趋势始终导致特定的表面积降解,从而限制了其性能。因此,有必要在还原过程中控制RGO的形态。在这里,我们开发了一种基于原位的基于原位的基于氧化石墨烯(GO)的方法,该方法使用绿色和有效的维生素C(VC)水溶液作为还原剂。获得的电极材料(通过基于膜的方法,VG-M的维生素C减少GO,VG-M)表现出174 f/g在1 A/G时的特异性电容,在40 A/G时保留的75.9%的保留率为75.9%,这是从传统方法中(通过搅拌方法降低VIVAMIN C降低的VIVAMIN C降低)的高度自堆叠材料(VG-S)。这种设计的方法成功地通过GO膜中的层状限制来实现RGO表形态的维护,并为两维(2D)材料形态控制提供了一种简单的方法。
摘要:这项研究研究了通过以离心机铸造以1500 rpm制造的Al 2 O 3 - Ni复合材料的磁场对Al 2 O 3 - Ni复合材料的影响。al 2 O 3,并将ni功能与水和弱化物结合,均质化,然后将其铸造成被ND-FE-B磁铁包围的多孔石膏模具。由于磁场和离心力的综合效应而导致的三区结构烧结,在还原的大气中烧结,具有不同的Ni含量。SEM,EDX和XRD分析确定了相的分布和组成。硬度测试揭示了最外层区域的最高值,并且逐渐降低了内部区域。采用数字图像相关性的压缩测试显示,与非磁性领域方法相比,抗压强度的较高的内部应力和抗压强度的显着改善。这项研究证实了磁性辅助离心滑移的显着性铸造可显着增强Al 2 O 3 - Ni复合材料的结构,硬度和抗压强度,表明对先进应用的有希望的潜力。
摘要在这项研究中,已使用Callicarpa Maingayi叶提取物合成了新的还原氧化石墨烯(RGO)。制备了基于Fe 3 O 4纳米颗粒的氧化石墨烯和碳纳米管((Fe 3 O 4 - (RGO&CNT)))的新型磁性催化剂。将平均尺寸为25至40 nm的Fe 3 O 4纳米颗粒放在碳纳米管上,并减少氧化石墨烯片,而在还原的石墨烯氧化物片之间插入的碳纳米管有效地阻止了其聚集。(Fe 3 O 4-(RGO&CNT)复合材料具有较大的表面积和良好的电催化特性,适用于通过伏安法的检测和测定伊马替尼(IM)抗癌药。在优化的条件下,在0.1至40μmolL -1的浓度范围内实现了良好的线性性,检测和灵敏度的极限分别为57 nmol L -1和3.365μaμm-1。此外,制造的传感器在所有电化学测试中表现出可接受的可重复的行为和准确性以及高水平的稳定性。此外,提出的方法用于在生物样品中检测IM,回收率为94.0%至98.5%,相对标准偏差为2.1至4.4%。
添加肉桂提取物是为了改善酸奶的功能特性。酸奶的限制因素是保持分配过程中质量的困难。喷雾干燥技术适合在分发过程中保持酸奶的质量。这项研究旨在通过在喷雾干燥过程前后通过添加肉桂提取物来评估酸奶的特性和抗氧化活性。使用完全随机设计的阶乘模式2×3(提取水平和酸奶类型)进行了研究。评估样品的pH值,水活性,粘度,可滴定酸度,总乳酸细菌,通过DPPH抑制,总酚类化合物(TPC),营养素含量和感觉特性,抗氧化活性。通过扫描电子显微镜分析了从喷雾干燥过程中获得的酸奶粉的视觉外观。结果表明,pH,粘度,可滴定酸度,可行的乳酸细菌,蛋白质和灰分含量受到喷雾干燥过程的显着影响,而水分含量和TPC受到喷雾干燥和酸奶类型的显着影响。总体而言,在喷涂干燥过程之后,肉桂酸奶还原的水分仍然具有抗氧化能力和质量,根据印度尼西亚标准和法典满足了要求。
Öz摘要在这项研究中,硼nitrür量子点(BNKN) /还原的氧化石墨烯(RGO)杂化结构的合成,这是一种用于超级电容器的新电极材料。bnkn具有与氧化石墨烯(GO)相同的晶体结构,因此优选BNKN@RGO杂种结构显示出非常好的电气性能。hekzagonal硼nitrür(H-BN)基于纳米酰基的杂种材料,BNKN,热稳定性和电导率原因近年来出于原因,而Grafen在超耐效率研究中通常更喜欢特定的表面积。此外,在该结构中添加不同的纳米利酶以提高图形的电容值是发展碳材料的电子发射器性能。因此,通过考虑在超级电容器中使用的混合电极电化学活性来测量特定的电容值将增加电化学活性。由于电化学研究的结果,在BNKN@RGOH杂交结构的5 mVs-1筛选速率下获得207.5 f/g高电容值。在1,000个周期中还进行了88.9%的环状稳定性性能。
减少的石墨烯氧化石墨烯由于其在开发广泛的应用设备方面的巨大潜力而引起了相当大的兴趣。合成还原石墨烯氧化石墨烯的关键特征是,不同的制备方法会导致具有不同特性的材料,进而影响其最终性能。在这里,我们描绘了两种简单的方法,可以从石墨粉中合成还原的氧化石墨烯。石墨氧化物是通过修饰的悍马方法通过石墨粉化的化学氧化来制备的。还原过程是通过化学和热液方法完成的,以达到最小残留氧功能。通过XRD,共聚焦拉曼,FTIR和SEM等表征工具进行了分析,该工具确认了还原氧化石墨烯的形成。尽管水热还原是具有成本效益和环境友好的,但与化学方法相比,该方法通过该方法氧化石墨烯是部分的。©2017 Elsevier Ltd.保留所有权利。在国际高级材料会议(Scicon ’16)的责任下进行选择和/或同行评审。
摘要 本文介绍了一种基于闪蒸还原的新型炼铁技术的开发。开发从动力学可行性的证明开始,考虑到典型的闪蒸反应器仅提供几秒钟的停留时间。随后在实验室闪蒸反应器中进行测试,最后进行中试操作。本文制定的速率方程是考虑到温度、停留时间和还原气体分压的最佳组合而开发的,以实现 > 95% 的还原度。在中型实验室闪蒸反应器中进行的实验表明,在低至 1175 °C 的温度下,在几秒钟的停留时间内可以获得 90% 以上的还原度。安装并运行了一个在 1200-1550 °C 下运行的中试反应器,以收集扩大工艺所需的数据。在这个大型反应器中进行的测试验证了设计概念在供热和停留时间方面的有效性,并确定了技术障碍。这项研究证明了闪蒸炼铁技术的技术可行性。这项工作的结果将有助于工业闪蒸炼铁反应器的设计。与平均高炉炼铁工艺相比,该项新技术预计可降低炼铁能耗高达 44%,并减少二氧化碳排放量高达 51%。
现在,纳米制作和纳米镀锌实验室活动主要集中于纳米光子学,包括各种各样的主题。我们支持纳米光子学中的几个研究小组,每个研究小组都集中在不同的领域。例如,一个重要的应用领域是2D和量子材料。我们有一个小组研究量子点进行照片检测和激光,另一组专门用于对太阳能电池进行研究,以及一个专注于光伏的团队。也有一个研究纳米组合的小组和一个从事光子介导的CO 2还原的新组合的小组,也就是说,他们使用光来寻找减少大气中的CO 2的方法。此外,对嗜热伏硫托(TPVS)的研究旨在从热量中检索能量,在红外光谱中发挥作用。这是我们想对使用SAMCO的CVD系统PD-220NL进行研究的应用之一。我们还有一个小组为生物传感和光学天线的纳米浮游生物工作,以及另一个使用我们的设施来开发具有抗细菌或疏水性特征的纳米结构玻璃,通过在玻璃上创建纳米结构而实现的纳米结构玻璃。