最近的荟萃分析显示,服用他汀类药物会增加患糖尿病的风险 [5]。他汀类药物增加糖尿病风险的机制可能是由于他汀类药物诱导的胆固醇生成拮抗作用导致血浆来源的低密度脂蛋白 (LDL) 胆固醇的形成增加,从而导致 β 细胞直接发炎和氧化,进而导致细胞凋亡和胰岛素分泌受损。他汀类药物还会对葡萄糖代谢和胰岛素抵抗 (IR) 产生影响;可能的机制可能是胰岛素分泌减少 [6,7]。其他可能的发病原因包括他汀类药物对 HMG-CoA 还原酶的抑制、钙释放、异戊二烯合成、葡萄糖转运、钙介导的胰腺胰岛素分泌、不同异戊二烯的降低 [8]。因此,他汀类药物是否确实可以控制糖尿病患者甚至糖尿病模型动物的血糖水平 (BSL) 尚不确定。
对于囊外疾病风险较高的患者,可以考虑添加 EBRT 或新辅助激素治疗;尽管临床医生必须意识到,关于它们的使用仍然存在争议,并且缺乏支持性临床数据。EBRT 的最佳剂量和治疗量尚未确定。雄激素剥夺疗法 (ADT) 对转移风险高且接受 EBRT 治疗的患者有一定作用。7 然而,ADT 与近距离放射治疗结合使用的价值和持续时间尚未确定。最常用的 ADT 药物是促黄体激素释放激素类似物,但拮抗剂正在发挥这种作用,在近距离放射治疗之前对大腺体进行细胞减灭术时,也可以考虑使用其他药物,例如 5 α -还原酶抑制剂和抗雄激素。新兴的全身药物很可能在未来与前列腺近距离放射治疗结合使用。
对于囊外疾病风险较高的患者,可以考虑添加 EBRT 或新辅助激素治疗;尽管临床医生必须意识到,关于它们的使用仍然存在争议,并且缺乏支持性临床数据。EBRT 的最佳剂量和治疗量尚未确定。雄激素剥夺疗法 (ADT) 对转移风险高且接受 EBRT 治疗的患者有一定作用。7 然而,ADT 与近距离放射治疗结合使用的价值和持续时间尚未确定。最常用的 ADT 药物是促黄体激素释放激素类似物,但拮抗剂正在发挥这种作用,在近距离放射治疗之前对大腺体进行细胞减灭术时,也可以考虑使用其他药物,例如 5 α -还原酶抑制剂和抗雄激素。新兴的全身药物很可能在未来与前列腺近距离放射治疗结合使用。
摘要:糖尿病 (DM) 是一种影响很大一部分人口的多因素慢性健康状况,根据世界卫生组织 (WHO) 的数据,患有糖尿病的成年人数量预计会增加。由于大多数糖尿病患者 (约 90-95%) 患有 2 型糖尿病 (T2DM),并且单靶点疗法通常无法控制血糖水平和其他合并症,因此本综述重点介绍了治疗此类糖尿病的潜在多靶点药物。特别是,本综述考虑了直接涉及 T2DM 或涉及糖尿病合并症的主要系统。考虑了作用于肠促胰岛素、胰高血糖素系统以及过氧化物酶体增殖激活受体的激动剂。考虑了针对醛糖还原酶和酪氨酸磷酸酶 1B 或钠葡萄糖转运蛋白 1 和 2 的抑制剂。此外,从治疗 2 型糖尿病的多靶点方法的角度,还讨论了一些植物复合物。
简单的摘要:识别生物靶标是破译抗癌药物作用机理的重要步骤。在这篇综述中,我们选择研究抑制硫氧还蛋白还原酶(TRXR)的关系,这是维持细胞氧化还原平衡的关键酶,以及两组器官测量复合物的细胞毒性效应。第一组本质上是由AU(I)和AU(III)配合物组成的,第二组包括金属蛋白(源自他莫昔芬)的金属纤维(构成金属纤维络合物)。结果表明,这两组在分子水平上与TRXR不同。对于其中许多人明确确定了TRXR抑制对复合物的细胞毒性的贡献,TRXR抑制作用起主要作用的复合物数量似乎很有限。最终,大多数配合物的抗增殖活性似乎源于与多个靶标的相互作用,这是解决MDR肿瘤的有利层面。
摘要引入核糖核苷酸还原酶(RR)亚基基因(RRM1,RRM2和RRM2B)表达的失调与各种人类恶性肿瘤的发生有关。然而,肺腺癌(LUAD)患者RR亚基基因表达的预后值仍然有争议。目的本研究旨在分析LUAD中RR亚基基因的表达谱,预后值和免疫浸润关联,以探索RR亚基基因表达在肺腺癌患者的预后中是否具有价值。方法论,我们使用多个搜索引擎访问多个在线生物信息学数据库,包括oncomine,Timer,Gepia,Kaplan -Meier Plotter,Prognoscan,Human Protein Atlas,MD Anderson Cancer Center,UCSC Xena,UCSC Xena,Cbioftal,Cbioftal,Cbioftal,TCGA,TCGA,GEO,GEO,DAVID和String Databases。结果研究发现,RRM1和RRM2可能是治疗LUAD的有吸引力的靶标,而RRM2B在LUAD中表达下来(P <0.05)。研究还发现,TCGA和GEO数据库中LUAD患者的预后不良,RRM1或RRM2表达较低,表明LUAD患者的预后不良(P <0.05)。此外,我们的结果表明,RR亚基基因表达具有不同的特征,并具有免疫浸润,RRM2B几乎与CD4+ T细胞以外的几乎所有浸润的免疫细胞具有轻微但显着的正相关性(所有P <0.05)。结论研究结果表明,RR亚基基因可能是LUAD患者的预后标志和治疗靶标。关键字:生物信息学分析;生物标志物;核糖核苷酸还原酶亚基基因;肺腺癌此外,通过对RR亚基基因的共表达基因网络分析,我们发现,五个新的中心基因(PLK1,Aurka,CDCA8,TTK和CDC45)与RRM1和RRM2的表达与RRM2B的表达差异较低,与RRM2B的表达相关的差异与RRM2B的表达差异很高,并且与这些五型HA的表达相关,并与RRM2B的表达差异很高,并显着阳性地相关。患者(p <0.05)。
CRISPR/Cas9 已成为斑马鱼基因组编辑的有力工具,它允许使用 DNA 模板和同源定向修复 (HDR) 快速产生功能丧失突变和特定等位基因的敲入。我们检查了合成的、化学修饰的 gRNA 的效率,并证明与重组 Cas9 蛋白结合可诱导插入缺失和大型基因组缺失。我们开发了一种体内遗传检测方法来测量 HDR 效率,并利用该检测方法来测试改变模板设计对 HDR 的影响。利用合成的 gRNA 和线性 dsDNA 模板,我们成功地在多个基因组位点进行了荧光团的敲入,并证明了以高效率通过种系传递。我们证明合成的 HDR 模板可用于敲入细菌硝基还原酶 (ntr),以促进特定细胞类型的谱系消融。总的来说,我们的数据证明了结合合成 gRNA 和 dsDNA 模板在体内进行同源定向修复和基因组编辑的实用性。
1,3-丙二醇(1,3-PDO)是重要的有机化学材料之一,可广泛用于聚酯合成,并且在医学,化妆品,树脂和可生物降解的塑料中也显示出很大的潜力。到目前为止,1,3-PDO主要来自化学合成。然而,1,3-PDO化学合成过程中的副产品和副作用对环境造成了严重破坏。近年来,在微生物中阐明了1,3-PDO的生物合成途径。在甘油脱氢酶(GDHT)和丙二醇氧化还原酶(PDOR)的作用下,可以通过还原途径催化甘油形成1,3- PDO。与化学合成相比,1,3-PDO的生物合成是环保的,但会面临生产较低的问题。为提高产量,基因工程已经修改了天然的1,3-PDO产生菌株,并且在模型微生物Escherichia Coli中已重建了生物合成途径。在这篇评论中,我们总结了微生物中1,3-PDO生物合成的研究进度,希望它将为行业可再生生产提供1,3-PDO的参考。
其天然膜中内源性蛋白质复合物的抽象成像可以揭示在洗涤剂溶解后损失的蛋白质 - 蛋白质相互作用。为了研究分枝杆菌氧化磷酸化机制中的相互作用,我们准备了来自smegmatis分枝杆菌的倒膜囊泡,并富含通过亲和力色谱含有兴趣复合物的囊泡。电子冷冻显微镜(冷冻-EM)表明,来自克雷布斯循环的酶(MQO)(MQO)与电子传输链复合物III 2 IV 2 IV 2(CIII 2 CIX 2)superComplex物理相关。对MQO:CIII 2 CIV 2相互作用的分析表明,CIII 2 CIV 2对于苹果酸驱动的,但不是NADH驱动的电子传输链活动和氧气消耗所必需的。此外,MQO与CIII 2 CIV 2的关联使电子从苹果酸到CIII 2 CIV 2与毫秒动力学转移。一起,这些发现表明了Krebs循环与呼吸之间的联系,该呼吸将电子沿着分枝杆菌电子传输链的单个分支引导。引言生物能是通过包括糖酵解,三羧酸或克雷布斯循环以及脂肪酸氧化的代谢途径从营养物质中提取的。在大多数生物体中,克雷布斯循环提供减少的烟酰胺腺苷二核苷酸(NADH),并琥珀酸酯添加到膜结合的电子传输链(ETC)配合物,以驱动跨膜质子质子运动力(PMF)的产生。PMF反过来为二磷酸腺苷(ADP)和无机磷酸盐(P I)合成三磷酸腺苷(ATP)提供了能量。nadh被ETC的复合物I氧化,将泛氨基酮降低为泛醇。在克雷布斯循环中,琥珀酸酯氧化为富马酸盐是必不可少的反应,但通过ETC的复合物II发生,这也将泛氨基酮降低到泛醇。然后将来自泛醇的电子依次转移至复合物III,细胞色素C(Cyt。c),复合物IV,然后氧气将其减少到水中。复合物I,III和IV对夫妇电子在整个膜上转移至质子易位,维持了为ATP合成的PMF。分枝杆菌等与典型的哺乳动物线粒体等不同的方式(在(Liang and Rubinstein,2023)中进行了多种方式)。首先,分枝杆菌等依赖于甲酸苯丙胺(MQ),而不是泛氨基酮。此外,与规范的etc,分枝杆菌等不同。在大多数分枝杆菌中,例如病原体分枝杆菌结核病和快速生长的腐生肉芽菌分枝杆菌Smegmatis,NADH:MQ氧化还原酶活性均由复合物I和一种或多种非腐蚀性泵送II型NADH脱氢酶(NDH-2S)催化。两种不同的酶SDH1和SDH2催化琥珀酸酯:MQ氧化还原酶活性。此外,结核分枝杆菌和Smegmatis均具有苹果酸:奎因酮氧化还原酶(MQO),将氧化剂氧化为Oxalo乙酸盐,这是KREBS循环的关键步骤,而将MQ降低到MQH 2(Harold等,202222)。在结核分枝杆菌中,除了苹果酸脱氢酶(MDH)之外,还发现了该MQO,它将电子从苹果酸转移到NAD +,而在Smegmatis M. smegmatis MQO中是唯一的苹果酸氧化酶(Harold等,2022)。c。也许最引人注目的是,分枝杆菌中MQH 2的氧化是由复合物III和IV(CIII 2 CIV 2)的超复合物催化的,并具有结合的细胞色素CC亚基,代替了可溶性细胞。MQH 2的氧化和将氧气还原为水还可以通过细胞色素BD复合物(在规范等中未发现)来实现,每种电子转移的质子比CIII 2 Civ 2易解的质子较少(Safiarian等,2021年)。
摘要研究表明,铁,碘,维生素B12和维生素D的缺陷与儿童发育延迟独立相关。虽然这些可能是独立的方式运作的,但这些营养素也有可能以某种联系在一起,这对于发育延迟而言是一种原因。维生素D的激活是一种多酶过程,它需要几个辅助因素(包括铁,维生素B2和维生素B12)的贡献。我们已经使用尿磷酸作为功能性维生素D缺乏症的标志物,并将各种泌尿代谢标记与尿磷酸水平进行了比较,以遵循维生素D激活中的基本元素。维生素D的激活取决于足够水平的铁,维生素B2和维生素B12,这是通过CYP27B1的多酶复合物在维生素D激活期间所必需的,腺苷毒素和腺苷毒素还原酶。这些发现将发育延迟的各种原因汇集到中央联系中,这些延迟可能有可能用于治疗和预防病情。