二十五年前,我做了一个梦,可以说是一个白日梦。你们很多人都有这个梦。我梦见一种特殊的计算机,除了“大脑”之外,它还有眼睛、耳朵、手臂和腿。我做梦也没有想到这个新的计算机朋友会成为我或我的雇主赚钱的手段,或者帮助我的国家——尽管我当时爱我的国家,现在仍然爱,而且我也不反对赚钱。我甚至没有梦见用这台奇妙的新机器来帮助世界上的穷人和残疾人这样的有价值的事业。不,我的梦想充满了看到一台机器像人一样行动的狂野兴奋,至少在许多方面是这样。我希望它能读出纸上的印刷字符和手写脚本。我可以看到它!或者它的一部分:在一个可以戴在我眼镜上的小相机里,附上一个耳塞,当我在街上遇到我的朋友和熟人时,它会悄悄地把他们的名字传到我的耳里。或者通过电话,我可以和德国的朋友交谈,他用德语,我用英语。你看,我的计算机朋友有能力识别人脸、合成语音、理解口语句子、翻译语言等等。我承认,1960 年我的计算机人的脑袋比我现在想象的要大得多。因为那时我还不知道微型计算机。我梦中的计算机人喜欢走路和打乒乓球,尤其是和我一起。我喜欢教它东西——因为它可以学习灵巧的技能和心理概念。还有更多。当我从白日梦中醒来时,我发现我们没有这些东西,但我们确实有一些了不起的计算机,即使在那时,所以我当时就决定放弃
封面照片:艺术气息十足的 F-1 发动机喷射板,这款发动机是阿波罗任务中土星五号火箭的主要动力,除其他升力外,还为它提供动力。液体燃料和液氧会从喷射板的孔中喷出,就像花园软管头喷出的水一样,但压力巨大。这台特殊的 F-1 发动机在阿拉巴马州亨茨维尔的美国太空和火箭中心展出。1958 年 8 月,即 ARPA(后来更名为 DARPA)成立仅六个月后,该机构批准了亨茨维尔陆军弹道导弹局的 Wernher von Braun 及其研究团队提出的设计和建造大型重型火箭运载器的提案。为了在第一阶段快速且廉价地实现巨大推力,ARPA 建议采用一组现有火箭发动机的设计,即 Rocketdyne 在 20 世纪 50 年代中期开发的强大 F-1。加速土星助推器成功开发的另一个原因是,上级依赖于早期为 ARPA 支持的 CENTAUR 飞行器开发的液氢技术。随着 DARPA 进入第七个十年,该机构仍然处于火箭设计的前沿,目前专注于快速、低调、低成本地将资产送入轨道的挑战。照片由 Lee Hutchinson 拍摄
l不要将计算机放在电视或无线电接收器附近。l将计算机远离磁铁。存储在闪存上的数据可能会丢失。l该计算机不适用于显示用于医学诊断的图像。l这台计算机不打算与医疗设备连接用于医疗诊断。l松下对使用本产品造成的数据或其他偶然或结果损害不承担任何责任。l不要触摸电池组上的端子。如果触点肮脏或损坏,电池组可能不再起作用。l不要将电池组暴露在水中,也不要让其湿润。l如果电池组将在很长一段时间内(一个月或更长时间)使用,则电池组充电或放电(使用)电池组,直到剩余的电池水平变为30%至40%,并将其存储在凉爽的干燥位置。l此计算机仅在剩余功率小于大约时才通过充电来防止电池充电。容量的95%。l首次购买计算机时不会充电电池组。首次使用之前,请务必向其充电。当AC适配器连接到计算机时,充电会自动开始。l电池应泄漏和液体进入您的眼睛,不要揉眼睛。立即用清水冲洗您的眼睛,并尽快查看医疗的文档。
时不时就会出现一个好主意。模块化头是一个好主意,它能够使用多种类型的 AFP 头、ATL、层切割、零件探测等。使用一台机器和加工单元。在 Electroimpact 于 2004 年左右开发模块化头时,业界认为(并接受)AFP 是一种不可靠的工艺。它仍然没有我们想要的那么可靠。应对这种可靠性不足的一种方法是将多个头放在 AFP 单元中,这样如果地板上的头出现问题,完全相同类型的备用头就可以立即投入使用。如果 AFP 工艺的可靠性提高 10 倍或 50 倍,多 AFP 头系统是否仍然具有商业价值?模块化机头可能仍会占上风,但指标会发生变化。例如,如果每个机头负载的停机时间只有 20 分钟,那么在单元中安装 2 个完全相同类型的机头可能不再有利。我们的目标是消除 AFP 流程的不可靠性,使这一讨论具有真正的意义。为了解决 777x 中遇到的可靠性问题的首要原因,我们发明了模块化伺服卷筒头。在过去的一年里,我们建造了这台机器的完整工作原型,并向波音公司和其他公司进行了演示。我们了解到,我们确实解决了 777x 翼梁生产中看到的可靠性问题的首要原因(零度铺层期间速度大幅变化时张力损失)。在
我第一次接触计算机是在 1966 年,当时我参加了埃文斯维尔学院(印第安纳州南部的一所小型私立学校)的一门(为期一季度)二年级数学课程(因为当时还没有计算机科学系)。这台机器是 IBM 1620,配备了(当时很现代的!)晶体管和正好 20,000 个十进制数字的磁芯存储器。它是用机器语言(不是汇编语言!)编写的,使用两个十进制数字操作码、十进制地址和通过标记内存位置内容定义的字段。它没有寄存器,也没有硬件十进制算术指令(算术是由软件完成的,存储乘法表并进行查找!)。所有 I/O 都是通过 80 列 IBM 打孔卡、行式打印机和只有学院管理部门才能访问的旋转磁盘进行的。我用低级机器语言编写代码没有问题,但使用 IBM 026/029 打卡机时却遇到了很大困难,它经常卡住、损坏卡片,并且随机无法在卡片顶部打印打卡的字符。我记得花在将程序打到卡片上的时间比编写程序的时间还多!下一季度的计算课程是关于数值方法(更多的是数学而不是计算机科学),使用非常早期的(NCE FORTRAN)编译器,更像现代计算,但有一个很大的区别——20,000 个十进制数字内存和唯一的输入设备是读卡器。任何严肃的数值计算都必须分阶段进行,中间结果打入卡片,然后读回以供下一阶段使用。请注意,加载所有
世界首屈一指的高性能计算设施之一 劳伦斯利弗莫尔是利弗莫尔计算 (LC) 的所在地,利弗莫尔计算是世界首屈一指的高性能计算设施之一。LC 拥有超过 188 千万亿次浮点运算能力和众多 TOP500 系统,包括 125 千万亿次浮点运算的 Sierra。Sierra 延续了世界级 LLNL 超级计算机的悠久历史,代表着迈向百亿亿次计算的倒数第二步,预计到 2023 年,LLNL 系统 El Capitan 将实现这一目标。这些旗舰系统支持 GPU,能够以前所未有的分辨率生成 3D 多物理场模拟,满足各种关键任务需求。2020 年,LLNL 和 Cerebras Systems 将世界上最大的计算机芯片集成到 Lassen 系统中,用尖端的 AI 技术升级了这台顶级超级计算机。这种结合创造了一种全新的计算解决方案,使研究人员能够研究预测建模的新方法。这些平台由我们经 LEED 认证的创新基础设施、电力和冷却设施提供支持;存储基础设施包括三种文件系统和世界上最大的 TFinity 磁带存档;以及顶级客户服务。我们行业领先的软件生态系统展示了我们在许多大型开源项目中的领导地位,从带有 Lustre 和 ZFS 的 TOSS 到获得 R&D 100 奖的 SCR 和 Spack。
多年来,陆军使用昂贵的弹出式帐篷,由维护密集的环境控制装置提供支持,工作人员无法快速拆除,1-38 IN 的领导希望建立一个没有这些限制的战术行动中心。为了实现这一目标,该部队将其战术行动中心建造在两辆现有的轻型中型战术车辆 (LMTV) 中,这两辆车辆可以并排停放,并用伪装网覆盖,以最大限度地减少其信号并为工作人员提供遮荫。两辆 LMTV 携带了四台先进系统改进计划 (ASIP) 无线电(带支架和扬声器)、两个联合作战指挥平台 (JBC-P)、一个与战术通信节点 (TCN) 绑定的安全互联网语音协议 (SVOIP) 系统,以及一些桌子、椅子和白板。一台 15 千瓦发电机被安装在其中一辆 LMTV 的车厢内用于发电,但 1-38 IN 还在轮换之前购买了多台商用现货 (COTS) 电池发电机,以尽量减少对这台发电机的需求。该单位将使用 15K 发电机快速充电更安静、更隐蔽的 COTS 发电机,这些发电机将用于运行 TOC 的系统。这种新设计的最后一个方面是其最小特征。使用了多种技术来减少 TOC 的特征,例如利用伪装网、阻止敌人在电磁 (EM) 频谱上探测它的能力,以及试图将 TOC 伪装成低优先级目标。采取这些措施后,1-38 IN 部署到 NTC 以测试其新的 TOC。
1990 年,美国众议院批准联邦政府共拨款 50 亿美元建造一台巨型质子加速器,即超导超级对撞机 (SSC)。这台机器的目的是测试亚原子粒子的复杂理论描述,并向全世界宣布美国不准备将高能粒子物理研究的领导地位拱手让给欧洲。一些不从事粒子物理研究的科学家和科学管理人员担心 SSC 的建设和维护成本会吸走政府从他们自己的研究领域获得的资金。结果,每年国会审议该项目预算时,科学界的意见并不统一。两位诺贝尔奖获得者成为支持和反对 SSC 的主要发言人。粒子物理学家史蒂文·温伯格支持该项目,凝聚态物理学家菲利普·安德森反对该项目。温伯格是微观物理学的专家,他是亚原子粒子理论“标准模型”的创始人之一,而 SSC 的设计初衷正是测试这一模型。他认为,科学界最重要的问题在于发现宇宙中最微小的粒子所遵循的物理定律。了解了这些微观定律,人们就可以(原则上)推导出原子核、原子、分子、固体、植物、动物、人、行星、太阳系、星系等较大物体所遵循的宏观定律。安德森是微观物理学的专家,他是凝聚态物理学的创始人之一,凝聚态物理学是一门研究大量原子如何相互作用,产生从液态水到闪亮钻石等各种物质的科学。他同意标准模型很有趣,但他否认基本粒子物理学定律对一些众所周知的难题和未解问题有任何帮助,例如:为什么存在物质?
在罗马帝国时期,尤里乌斯·凯撒使用一种替换密码来编纂秘密信息,其中每个字符在字母表中向下移动三个位置,从而报告了使用密码技术保护机密信息的第一个历史证据之一 1。今天,信息社会每年传输 10 亿 TB 的数据,保护机密数据的隐私是一项全球性挑战 2,3。目前,大多数密码系统的安全性并不依赖于无条件证明,而是依赖于数学或概率陈述。主要思想集中在安全边际:如果使用 n 种资源破解了代码,则修改代码,例如将其密钥长度加倍,这样所需的资源就会呈指数增加。这种模型容易受到技术发展的影响,并且不能保护用户免受过去的攻击:攻击者可以存储今天发送的信息,并等待合适的技术以便明天破解消息。历史表明,这种情况有计划地发生在比预测更短的时间内。最著名的例子可能是恩尼格玛密码机的破解,恩尼格玛密码机是二战期间用来传输绝密军事信息的加密打字机。由于加密代码的基础组合数量众多,所以恩尼格玛密码机被认为是牢不可破的。尽管如此,这种安全猜想还是随着阿兰·图灵和他的同事们的工作而瓦解,他们通过设计第一台建筑计算机破解了恩尼格玛密码机,这台计算机一直秘密使用到二战结束 4 。在这个例子中,安全性被破解但没有公开披露,一方可以自由地侵入另一方的私人信息,完全不被注意。另一个例子是美国联邦数据加密标准 (DES),它被认为是安全的,因为一台足够快的机器可以破解它
Le Maitre MVS 烟雾机是高规格烟雾机系列中的最新产品,因此可以满足大多数需要更高要求的应用。它利用原始专利技术,通过易于更换的“转换”管产生烟雾,同时受益于其更大合作伙伴 Stadium 烟雾机在开发过程中取得的进步。更大直径的转换管、更高功率的气泵、相位延迟高侧电流控制、更高温度的清洁方案都有助于提高输出和可靠性。MVS 具有集成的四通道电流协议 DMX、数字编程、数字显示器和独特的气流系统。现在可以控制音量输出,也可以控制烟雾的投射距离。同样,对两个内置大功率风扇的独特数字控制不仅可以控制投射功率,还可以控制投射相对于机器位置的角度。烟雾输出角度可通过电子方式调整至 90 度。烟雾绝不会与导轨或结构接触,否则通常会导致冷凝水和残留物的积聚。机器的控制中使用了两个通信处理器设备,可以高效、专用地控制其连接的设备。控制面板处理器包括非易失性存储器,允许将所有设置保留在该存储器中,并在启动时调用。这对于需要“开机即用”模式的俱乐部或剧院设置来说是理想的选择。最新的高温转换管清洁技术从首次开启开始仅需两分钟的操作,在机器运行期间不再需要。MVS 本身的设计考虑了用户操作和安装,因此可以在多个位置使用。底座支撑板可以调整,以在多个角度物理支撑机器,而单独的瓶架可以连接或与机器分离使用。Le Maitre 认为,这台机器是目前世界上最有效和用途最广泛的烟雾机之一,并得到了我们一贯高水平的技术和销售沟通网络的支持。有关 MVS 的所有详细信息可在我们的网站 www.lemaitreltd.com 上找到