B'Against心血管疾病和各种人群中的全因死亡率[4,6,7]。因此,由于人口寿命增加的相关性,CF的连续测量可以被视为生命体征,因此,这应该是公共卫生的优先事项[8];但是,CF的定义和评估方式是矛盾的[9 \ XE2 \ x80 \ x93 11]。CF,作为在心肺运动测试(CPET)期间获得的最大有氧功率指数[11 \ XE2 \ X80 \ X93 13]。_ vo 2 max分别反映了肺,心血管和代谢系统分别捕获,运输和利用氧气的最大容量,该系统直接受CF的影响[13,14]。但是,CPET期间的_ VO 2最大测量需要训练有素的专业人员和昂贵的设备[15 \ XE2 \ X80 \ X93 17],并且很少用作一般人群中的预防工具。因此,在CPET期间由_ VO 2 MAX评估的CF均不能为所有人群提供,并且无法连续获得。因此,考虑到执行CPET的困难,但是鉴于评估心血管健身的高临床价值,需要进行连续评估CF的新方法。在无监督的日常生活活动(ADL)的活动期间,如果在实验室外部进行的所有人口(ADL)[18],这些方法可能更现实,无障碍和可供所有人口访问。最近,在医学中使用了可解释的模型来更好地证明预测模型的决策[26]。可穿戴传感器和生命信号融合可能代表连续推断CF的独特可能性,从而允许将来使用该技术来预测NCD,尤其是心血管疾病[6,7]。此外,越来越多的研究结合了使用磨损和机器学习技术来监测NCD患者的使用,尤其是在心脏呼吸型领域[19,20]。实际上,来自可穿戴设备的纵向数据似乎包含足够的信息,可以预测来自Com-Plex机器学习算法的无监督ADL的健康志愿者[21 \ XE2 \ X80 \ X93 25]。然而,尽管可穿戴设备和机器学习之间存在着巨大的潜力,但仍然缺乏使用这些技术预测NCD患者的CF的证据,尤其是在糖尿病,慢性肺部疾病和心血管疾病中。此外,了解这些模型如何通过机器学习算法训练,可以将重要信号转换为_ VO 2 Max可能会提供有关志愿者之间CF差异的复杂机械见解。由于_ vo 2最大词语算法的复杂性,基于从可穿戴技术获得的功能[25],纵向生命信号的解释能力被转换为_ vo 2 max的纵向范围非常低[26] [26],因为对给定模型的解释性及其性能之间的预期折衷是可以预测的健康及其健康的折算[27]。在本文中,我们调查了Shapley来评估CF预测问题中特征的重要性。众所周知,可穿戴传感器对于可以与机器学习技术相关的连续生物数据采集很有用,例如随机森林回归,神经网络和支持向量回归机器可预测CF [21,25]。因此,理解这些模型还可能表明人类\ Xe2 \ x80 \ x9cblack box \ xe2 \ x80 \ x80 \ x9d生理系统如何与环境相互作用,近似这些复杂算法的解释能力,即我们在使用简单的方法中所体验的内容,例如在线性性回归模型中所体验的内容。Shapley添加说明(SHAP)是一种源自Cociational Game理论的宝贵方法,该方法可用于解释根据从生物学数据获得的监督机器学习方法构建的复杂模型[26,28]。其使用的主要动机依赖于(1)其成为模型不可知论的能力(即,与任何模型相关的解释方法,以提取有关预测过程的额外信息'