块编码是现有许多量子算法的核心,而密集算子的有效、显式块编码也被普遍认为是一项具有挑战性的问题。本文对一类丰富的密集算子:伪微分算子(PDO)的块编码进行了全面的研究。首先,开发了一种用于一般PDO的块编码方案。然后,我们针对具有可分离结构的PDO提出了一种更有效的方案。最后,我们针对具有维度完全可分离结构的PDO给出了一种显式、有效的块编码算法。对所提出的所有块编码算法都提供了复杂度分析。通过实例说明了理论结果的应用,包括变系数椭圆算子的表示和不调用量子线性系统算法(QLSA)计算椭圆算子的逆。
相关的工作最近的生成模型进展引入了晶格场理论模拟的新可能性[12]。基于流动的模型是一种突出的显式可能性估计方法,由于其可逆性和显式使用量规能量的使用[12-17],因此引起了人们对晶格模拟进行全局采样的关注。此外,最近还开发了一些归一化流的变体,例如连续归一化流[18-21]和随机归一化流[22,23]。扩散模型最近在各种领域中生成高质量的样本[24,25],包括高能物理学[26-29]。参考文献中启动了晶格场理论的应用。[30,31],其中突出显示了与随机量化的连接[9-11];稍后提出了Feynman Path的积分公式[32]。
摘要:我们探索如何构建量子电路,通过将给定汉密尔顿量显式编码到电路中来计算对称子空间内给定汉密尔顿量对应的最低能量状态。我们创建显式酉和变分训练酉,将由定义子空间中的 ansatz A(oL) 输出的任何矢量映射到对称空间中的矢量。对参数进行变分训练以最小化能量,从而将输出保持在标记的对称值内。该方法针对使用旋转和反射对称的自旋 XXZ 汉密尔顿量和使用 S 2 对称的 S z = 0 子空间内的 % 汉密尔顿量进行了测试。我们发现变分训练的酉在深度非常低的电路中给出了良好的结果,因此可用于在近期量子计算机中准备对称状态。
小样本物体检测(FSOD)旨在通过少量参考样本对新类别的物体进行识别和定位,是一项颇具挑战性的任务。先前的研究通常依赖于微调过程将其模型迁移到新类别,而很少考虑微调的缺陷,从而导致了许多应用缺陷。例如,这些方法由于微调次数过多而无法在情节多变的场景中令人满意,并且它们在低质量(如低样本和类别不完整)支持集上的性能严重下降。为此,本文提出了一种即时响应小样本物体检测器(IR-FSOD),它可以在没有微调过程的情况下准确直接地检测新类别的物体。为了实现目标,我们仔细分析了 FSOD 设置下 Faster R-CNN 框架中各个模块的缺陷,然后通过改进这些缺陷将其扩展到 IR-FSOD。具体来说,我们首先为框分类器和 RPN 模块提出了两种简单但有效的元策略,以实现具有即时响应的新类别对象检测。然后,我们在定位模块中引入了两个显式推理,以减轻其对基类别的过度拟合,包括显式定位分数和半显式框回归。大量实验表明,IR-FSOD 框架不仅实现了具有即时响应的少量对象检测,而且在各种 FSOD 设置下在准确率和召回率方面也达到了最先进的性能。
许多人不耐烦。,当人们不耐烦地过时:实施“时捆”合同时,我们就如何使激励措施特别奏效,这使得激励措施特别有效,从而使未来的e椅当前e↵Ort付款。我们使用对印度糖尿病患者中的激励措施进行运动(步行)的奖励措施的随机评估来测试并找到对这一预测的经验支持。平均而言,时间捆绑合同产生的e显量与线性合同一样多,但成本降低。时间捆绑的合同在比耐心更大的个人中表现出色,这表明不耐烦是一种促成机制。相比之下,增加付款频率(如果个人在付款中不耐烦而不是e治)没有e显的付款频率 - 这表明对付款的不耐烦有限。总体而言,激励计划是e的,每天的步骤增加了约20%(步行13分钟)并改善了健康。
蚀刻设置 - up。尖端可以用作纯发射器作为纯发射器或在氧化物添加氧化涂层时以热效率/ Schottky模式操作。超出尖端的其他应用(尖端直径<100 nm)包括用作STM探针或纳米流动器。可以使用电流 - 电压特性,通过发射模式观察,通过测量液压和电子束的稳定性来分析隧道尖端性能。可以在我们的FI ELD发射显微镜中进行原位进行无涂层尖端的激活和Thermal-Fi ELD发射器(或Schottky发射器)的测试。A.Knápek等。 : - “ STM尖端电化学制备和超偏用发射阴极的可编程设置”,微电动工程学,2017年,173:42-47 A.Knápek等。 : - “聚合物石墨铅笔作为经典导电SPM探针的便宜替代品。”纳米材料,2019,9.12:1756。 A.Knápek等。 : - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。A.Knápek等。: - “ STM尖端电化学制备和超偏用发射阴极的可编程设置”,微电动工程学,2017年,173:42-47 A.Knápek等。: - “聚合物石墨铅笔作为经典导电SPM探针的便宜替代品。”纳米材料,2019,9.12:1756。A.Knápek等。 : - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。A.Knápek等。: - “常规SEM中聚焦电子束的波动。”超显镜,2019,204:49-54。
• 我们展示了 QPCP 的一个先决条件:一个显式局部哈密顿量,其低能态都需要 ω (log n ) T 门,也就是说,它们非常不稳定。事实上,我们展示了一个更强的结果,即低能态需要 Ω( n ) T 门,而这不一定是 QPCP 所暗示的。
•阐明对言语和非语言交流中文化差异的复杂理解(例如,证明人们在不同的文化中进行交流或使用直接/间接/显式/隐式含义时对人们使用身体接触的程度的理解)。•基于这些差异巧妙地协商共同的理解。
显热(如熔盐、岩石材料、混凝土)(研发/中试阶段) 潜热(如铝合金)(商业化) 热化学热(如沸石、硅胶)(研发) 热化学热(如沸石、硅胶)(研发) 电化学 铅酸电池(商业化) 锂离子电池(商业化) 锌碱性电池(商业化) 液流电池(商业化)
当回收显热能和潜热能是当务之急,但又不需要焓轮的维护时,带有焓芯热交换器的 VPRC 是一个极好的选择。焓芯热交换器的排气传输比 (EATR) 为 0%,由 AHRI 1060 确定,并且可以安全处理累积的冷凝水而不会受到霜冻损坏。