摘要:寻找新的机制解决方案以应对生物催化挑战是酶进化适应以及设计新催化剂的关键。最近人造物质被释放到环境中,为观察生物催化创新提供了动态试验场。用作杀虫剂的磷酸三酯最近才被引入环境中,而它们并没有天然对应物。为了应对这一挑战,酶已迅速进化以水解磷酸三酯,并趋向于相同的机制解决方案,即需要二价阳离子作为催化的辅助因子。相比之下,先前发现的宏基因组混杂水解酶 P91(乙酰胆碱酯酶的同源物)实现了由金属独立的 Cys-His-Asp 三联体介导的缓慢磷酸三酯水解。在这里,我们通过对 P91 进行定向进化来探究这种新催化基序的可进化性。通过将聚焦库方法与液滴微流体的超高通量相结合,我们仅通过两轮进化就将 P91 的活性提高了约 360 倍(达到 ak cat / KM ≈ 7 × 10 5 M − 1 s − 1 ),可与自然进化的金属依赖性磷酸三酯酶的催化效率相媲美。与其同源物乙酰胆碱酯酶不同,P91 不会遭受自杀抑制;相反,快速的去磷酸化速率使共价加合物的形成而不是水解速率成为限制因素。定向进化改进了这一步骤,中间体的形成速度提高了 2 个数量级。将聚焦的组合库与液滴微流体的超高通量相结合,可以用于识别和增强自然界中尚未达到高效率的机制策略,从而产生具有新型催化机制的替代试剂。■ 简介
• 最近几周,几个国家的初级和二级护理就诊率表明,欧盟/欧洲经济区存在显著的呼吸道病毒活动。季节性流感和呼吸道合胞病毒 (RSV) 疫情正在持续,而 SARS-CoV-2 活动处于非常低的水平。 • 所有指标都表明,欧盟/欧洲经济区流感活动广泛且主要处于中等水平,大多数国家继续观察到检测阳性率的上升。目前,大多数国家因流感住院的人数与之前疫情高峰期的水平相当。众所周知,流感住院会给医疗保健系统带来巨大压力,并使医院容量紧张。45 岁及以上的人出现严重后果的风险最高,这凸显了继续采取有针对性的预防措施(例如接种疫苗)的必要性。 • 欧盟/欧洲经济区各地的 RSV 活动各不相同,一些国家已经度过了疫情高峰,而其他国家的检测阳性率继续上升。五岁以下儿童和 65 岁及以上人群中,因呼吸道合胞病毒而入院的人数仍然很高。• ECDC 在流行病学更新中发布了 2024/2025 年冬季应对措施建议。接种疫苗是预防更严重病毒性呼吸道疾病的最有效措施。鼓励符合接种条件的人接种疫苗,尤其是那些严重后果风险较高的人。应提醒临床医生,如有指征,早期使用抗病毒药物治疗流感可能会防止弱势群体病情发展为严重疾病。• 非药物干预措施,如经常洗手、保持身体距离和避免大型聚会,也有利于各国控制疫情。在流感季节高峰期,在医疗机构和长期医疗机构中佩戴口罩可以被视为减少向弱势群体传播的一种方式。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
ic ̇ \ „ _ 4 ì M a æ ̇ d %–+ _ 6ı M /¡ 6ä $ ̨ ƒ bp 6o 0Û o Ì i [ 6 ~ NET /¡ $ ( í /¡ $ ( '...0d&ì'¤ 32 $0 %_¿ ö( € S ̇ \ „ _ 4 ì M a æ ̇ d %–+ _ 6ı M /¡ 6ä $ ̨ ƒ >& p 6o 0Û o >' ( &É _ > 8 Z0Û o Ì i L † '̇ K '¤ $20 ” Gü%2 1N ~ & I € S vb [ 6
摘要。我们分析了共同参与人工智能 (AI) 的企业和机构的部门和国家系统。除了将 AI 作为通用技术或其特定应用领域的分析之外,我们还借鉴了部门系统的进化分析,并询问“谁在做什么?”在 AI 中。我们提供连接 AI 开发者、制造商和用户的复杂相互依赖模式的细粒度视图。我们区分了 AI 支持、AI 生产和 AI 消费,并分析了企业和社区之间新兴的共同专业化模式。我们发现,人工智能的供应以少数几家大型科技公司为主导,这些公司对人工智能的下游应用(例如搜索、支付、社交媒体)支撑了人工智能最近的大部分进展,同时也提供了必要的上游计算能力(云和边缘)。这些公司在人工智能研究领域主导着顶尖学术机构,进一步巩固了它们的地位。我们发现,只有少数能够数字化和获取高质量数据的公司采用了人工智能,并从中受益。我们考虑了人工智能行业在三个主要地区(中国、美国和欧盟)的不同发展情况,并注意到少数公司正在构建全球人工智能生态系统。我们的贡献是以人工智能为例展示进化思维的演变:我们展示了从国家/部门系统到三螺旋/创新生态系统和数字平台的转变。我们得出了如此广泛的进化理论对理论和实践的影响。
人工智能技术赋予计算机智能能力,正在彻底改变传统的信息处理框架,给医疗保健、护理、健康、制造、药物研发、金融等各个领域的行业、科技研究和社会运作方式带来重大变化。 AI技术正在成为DX超越单纯数字化、引发社会重大变革的必备技术。 另一方面,在人工智能应用于社会的过程中,人们越来越认识到人工智能与人类智能存在很大差异。人工智能并非取代人类,相反,将两种互补的智能结合起来解决问题正变得越来越重要。 共同进化项目的目的是创造一个“两种智能协同工作”的合作框架,并更进一步,创造一个“以螺旋式的方式相互增强彼此智能”的框架。 在团队合作框架中,挑战在于两个智能实体之间的相互理解和沟通。这将把可解释人工智能(XAI)、白盒人工智能和人机交互(HCI)的研究纳入更广泛的技术框架中。 到目前为止,专家(人类)在特定领域的知识和经验都是通过一个狭窄的渠道传达给人工智能的:训练数据的构建。共同进化人工智能的另一个挑战是扩展这一渠道,并开发将人类知识财富系统地嵌入人工智能系统的方法。 同时,协同进化人工智能还旨在通过人工智能将人类专家和技术工人所掌握的隐性知识显化,从而发现新知识并将其反映在教育中,从而增强人类的智力能力。 当然,人类与人工智能的共同进化是一个开放而又雄心勃勃的挑战,不可能一蹴而就。随着我们不断进行各种尝试,这个概念的本质变得越来越清晰。我们希望本小册子中提出的研究将成为实现这一目标的第一步。
该项目的目的是观察两个人工智能代理(一个“寻找者”和一个“隐藏者”)在玩简化版的捉迷藏游戏时的发展。这些代理将通过机器学习得到改进,并且只会被赋予对游戏规则的理解和在游戏的网格状空间中导航的能力;它们不会被教授或提供任何策略,而是从头开始学习。特别有趣的是观察随着游戏中引入新元素(例如障碍物、门和其他环境影响),隐藏者和寻找者智能的特殊游戏风格。通过这种观察,我希望不仅能确定捉迷藏游戏中的关键策略,还能更好地了解机器学习 AI 搜索和隐藏模式的演变,这与网络、人工智能和网络安全等多个领域相关。
・Osaka University ・University of Electro-Communications ・ChiCaRo Inc. ■Development of an online language-learning support AI system that grows with people ・Waseda University ■White-boxing deep learning using a modular model ・Tokyo Institute of Technology ・GE Healthcare Japan, Inc. ①-3 Development of fundamental technologies for AI that learns by understanding human intentions and knowledge ■Development of a platform to support the creation of interactive story-type content ・Keio University ・Future University Hakodate ・Tezuka Productions Co., Ltd. ・University of Electro-Communications ・University of Tokyo ・Historia Inc. ・Rikkyo Gakuin ・Ales Inc. ■Research and development of human-centered artificial intelligence technology embedded in the real world ・National Institute of Advanced Industrial Science and Technology ■Development of fundamental technologies for human-collaborative AI that supports the actualization and transfer of experts' tacit knowledge ・Kyoto University ・National Institute of Advanced Industrial Science and Technology ・Mitsubishi Electric Corporation ■Research and development of explainable autonomous interaction AI and its application to childcare and developmental support (※Spanning ①-2 themes) ・Osaka University ・University of Electro-Communications ・ChiCaRo Inc. ■AI that evolves with people・株式会社英语:在线教育平台的开发・认知研究实验室,・京都大学■开发语义创作平台,以提高人类与AI o oki oki oki oki oki oki oki oki oki oki oki oki tohoku tohoku tohoku University ・ nagoya nagoya技术Tokai国家高等教育和研究系统・那高雅大学,Tokai国家高等教育和研究系统■使用AI和VR ・ Kansai大学的分子机器人共同创造环境的研究和开发・分子机器人Institute Co.,Ltd.建立产品信息数据库的研究和开发■建立产品信息数据库的研究和开发・ Arthur D. Little Japan Inc. ・软银公司・软银银行公司,Panasonic Connect Co.工业科学技术
越来越多的实验证据表明,抗癌和抗菌药物本身可能通过提高可突变性来促进耐药性的获取。成功控制不断发展的人群要求将这种控制的生物学成本识别,量化并包括在进化知情的治疗方案中。在这里,我们确定,表征和利用降低目标人口大小和产生治疗引起的救援突变的盈余之间的权衡。我们表明,在中间剂量下,治愈的可能性最大,低于药物浓度产生最大种群衰减,这表明在某些情况下,通过较少积极的治疗策略可以大大改善治疗结果。我们还提供了一般性的分析关系,该关系将生长速率,药效学和依赖性突变率与最佳控制定律联系起来。我们的结果强调了基本生态进化成本的重要但经常被忽略的作用。这些成本通常会导致情况,即使治疗的目的是消除而不是遏制,累积药物剂量也可能是可取的。综上所述,我们的结果加剧了对管理侵略性,高剂量疗法的标准做法的持续批评,并激发了对诱变性和其他隐性疗法的其他隐性抵押成本的进一步实验和临床投资。
