许多 HAR 基因靶标在发育中的人类大脑中活跃,与神经元形成和维持神经元间通信等过程有关。有些还与自闭症和精神分裂症等疾病有关,这凸显了 HAR 在塑造正常大脑功能以及神经系统疾病方面的潜在作用。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 10 月 16 日发布。;https://doi.org/10.1101/2022.10.16.512417 doi:bioRxiv 预印本
5 加州大学伯克利分校分子与细胞生物学系,加利福尼亚州伯克利,美国。 6 马克斯普朗克分子细胞生物学和遗传学研究所以及马克斯普朗克复杂系统物理研究所,德国德累斯顿。 7 欧洲分子生物学实验室(EMBL),发育生物学部,德国海德堡。 8 加州大学欧文分校发育与细胞生物学系,加利福尼亚州欧文,美国。 9 波士顿大学生物医学工程系和生物设计中心,马萨诸塞州波士顿,美国# 通讯作者:alvaro.sanchez@yale.edu 摘要 定向进化已用于自上而下地设计生物系统数十年。通常,它已应用于生物体水平或以下,通过迭代采样突变景观来引导寻找具有更高功能的遗传变异。在生物体水平之上,少数研究尝试人工选择微生物群落和生态系统,但成功率参差不齐,且通常不高。我们对人工生态系统选择的理论理解仍然有限,特别是对于大型无性生物群落,而且我们对设计有效的方法来指导它们的进化知之甚少。为了解决这个问题,我们开发了一个灵活的建模框架,使我们能够在广泛的生态条件下系统地探究任意一组群落和选定功能上的任意选择策略。通过在相同条件下人工选择数百个计算机模拟微生物元群落,我们检查了迄今为止使用的两种主要育种方法的基本局限性,并规定了显着提高其功效的修改。我们确定了一系列定向进化策略,特别是当结合使用时,它们更适合自上而下地设计大型、多样化和稳定的微生物群落。我们的结果强调,定向进化允许在生态结构功能景观中进行导航,以寻找动态稳定、生态和功能具有弹性的高功能群落。
fi g u r e 1微生物生态进化动力学对生态系统功能的影响。跨站点的社区由不同的操作分类单元(OTU)组成,这是微生物物种的替代物(此处为四个OTU为简单起见)。然而,OTUS掩盖了数百万年的进化差异,排除了对微生物种群或其他适应性反应的进化动力学的见解。当一个社区对环境变化做出反应时,生态(即种间变化)和进化反应(即种子内变化)转移分类(物种)和遗传(等位基因(等位基因)频率)。可以通过系统发育保护程度来评估功能性状(例如,碳降解和温度反应)的变化(例如碳降解和温度反应),以预测社区的整体功能响应。
在数值约束优化的背景下,我们研究了通过增强拉格朗日方法处理约束的随机算法,特别是进化策略。在这些方法中,原始约束问题被转变为无约束问题,优化函数是增强拉格朗日,其参数在优化过程中进行调整。然而,使用增强拉格朗日会破坏进化策略的一个核心不变性,即对目标函数严格递增变换的不变性。尽管如此,我们形式化地认为,具有增强拉格朗日约束处理的进化策略应该保持对目标函数严格递增仿射变换和约束缩放的不变性——严格递增变换的一个子类。我们表明这种不变性对于这些算法的线性收敛非常重要,并表明这两个属性是如何联系在一起的。
摘要:质子交换膜水电解仪(PEM-WE)是一种著名的氢生产绿色技术。大规模开发的主要障碍是氧气进化反应(OER)的动力学。目前,对OER的酸稳定电催化剂的设计构成了电催化中的重要活性。本评论介绍了对氧气演化,反应机理和OER描述符的高级电催化剂设计的基本原理和策略的分析。对OER电催化剂的审查进行了从单一到多元素的元素组成。此外,总结了高渗透合金(HEAS)的目的(HEAS),用于设计高级材料的设计。brie tove the the的影响,对调节催化剂的电子特性有益的支持材料的影响。最后,给出了酸性OER电催化剂的前景。
与发病机理相关1(NPR1)的非XPRessor对于通过信号分子水杨酸(SA)激活植物免疫系统至关重要,这会触发拟南芥的全身性获得性(SAR)。在这项研究中,已经在Cacao的基因组中鉴定出了三个与NPR1相关的假定基因,即TCNPR1,TCNPR2和TCNPR3,这表明这三个基因实体之间的功能多样化表明。系统发育分析表明,TCNPR1和TCNPR2与它们的拟南芥直系同源物NPR1和NPR2一起分支,表明这些基因在不同物种的SA信号传导途径中保持了保守的作用。相比之下,TCNPR3存在于单独的进化枝中,表明了独特的功能作用和进化差异。对这些TCNPR的生理化学特性的比较分析显示出不同的亚细胞定位,因为TCNPR1在细胞质中持续存在,而TCNPR3在细胞核中发现,与其在SA信号传导和转录性调节中的作用保持一致。此外,我们确定了针对TCNPR3的microRNA,这表明P. Megakarya可能会利用转录调节网络绕过植物防御激活。通过RNA干扰介导的基因沉默对TCNPR基因的瞬时过表达或抑制可能足以研究对其他分子的产生的影响,例如SA,某些PR蛋白表达以及对巨疟原虫的抗性。由TCNPRS编码的蛋白质与P. megakarya的细胞蛋白质之间的相互作用将提供有关Patho Gen是否操纵宿主防御的洞察力。最后,P。Megakarya响应感染TCNPR基因的表达提供了有关防御反应过程中时间和空间激活的有价值的信息。
1 加州大学伯克利分校分子与细胞生物学系;美国加利福尼亚州伯克利市;2 加州大学创新基因组学研究所;3 加州大学伯克利分校加州定量生物科学研究所 (QB3);4 加州大学伯克利分校霍华德休斯医学研究所;美国加利福尼亚州伯克利市;5 加州大学伯克利分校地球与行星科学系;6 加州大学洛杉矶分校分子、细胞和发育生物学系;7 加州大学伯克利分校计算生物学中心;8 加州大学洛杉矶分校霍华德休斯医学研究所;9 格拉德斯通研究所;美国加利福尼亚州旧金山市;10 格拉德斯通-加州大学旧金山分校基因组免疫学研究所; 11 劳伦斯伯克利国家实验室分子生物物理和综合生物成像部;美国加利福尼亚州伯克利市;12 加利福尼亚大学伯克利分校化学系;美国加利福尼亚州伯克利市;
3家族拉尔森·罗森奎斯奎斯特(Larsson-Rosenquist)的神经发育,成长和营养中心,新生儿,苏黎世大学新生儿学系,苏黎世大学和瑞士苏黎世大学医院,瑞士苏黎世苏黎世,与其他任何大猿不同,人类都会出现大型的,第二个非凡的婴儿,表现出更大的社会发展,需要更大的社会发展,并需要更大的社会发展。这些特征是人类自适应复合物的特征是复杂的联系,并且必须在进化时间内相互加强。在这里,我们使用了古生物学,发育心理学和儿科的最新证据,并进行了比较分析的补充,以询问可能触发这种协同进化的反馈回路的是什么:双皮亚,直接选择对利润,高质量饮食或合作育种。在人类进化期间,早期通过广泛的同类护理,即CB-First型号最能适应可用的数据。尤其是CB是一种催化剂,可以进一步增加大脑的大小,因为即使大脑降低了生活史病史和神经发育,因此导致了人口统计困境,CB也能够增加出生率。Key words: Secondary altriciality, bipedality, brain size evolution, cooperative breeding, altercentrism, neurodevelopment Funding statement This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme grant agreement No 101001295 (JB), and the NCCR Evolving Language, Swiss National Science Foundation Agreement no.51NF40_180888(JB和CVS)和苏黎世大学(PC)的Forschungskredit。
膜联蛋白(ANNS)是一个在植物生长,发育和压力反应中起关键作用的进化保守,依赖钙依赖性的磷脂结合蛋白的家族。利用26个高质量玉米基因组的泛基因组,我们鉴定了12个ANN基因,其中包括9个核心基因(以所有26条线为单位)和3个近核基因(以24-25条为单位)。这突出了基于单个参考基因组研究ZMANN基因的局限性。评估26个品种中ANN基因的KA/KS值表明Zmann10在某些品种中处于正选择状态,而其余基因的Ka/ks值小于1,表明纯化选择。系统发育分析将ZMANN蛋白分为六组,其中VI仅包含ZMANN12。某些品种的结构变化改变了保守的结构域,产生了许多非典型基因。转录组分析表明,不同的ANN成员在各种组织以及不同的非生物和生物应力处理下具有不同的表达模式。在冷应力下,来自各种玉米组织的转录组数据的加权基因共表达网络分析鉴定出参与共表达模块的四个ANN基因(Zmann2,Zmann6,Zmann7,Zmann9)。总体而言,这项研究利用高质量的玉米pangenomes对Zmann基因进行生物信息学分析,为ZMANN基因的进一步研究提供了基础。
