上衣是脊椎动物的最接近的生物亲属,为塑造动物发育的进化过程提供了一个非凡的窗口(Ferrier,2011; Johnson等,2024; Todorov et al。,2024)。这些海洋无脊椎动物表现出非常多样化的生活方式(底栖,全骨,孤独,群体或殖民地),生命周期(简单或复杂)以及发展(直接,间接,性或无性恋)(Ricci等人,2022年,2022年; Nanglu等,20223)。这种多样性与它们与脊椎动物的遗传相似性相结合,使双线线成为理解发育机制如何促进进化新颖性的宝贵模型(Procaccini等,2011; Popsuj et al。,2024)。调皮基因组学和表达方面的最新进展使得有可能更深入地了解调皮发育的分子基础(Oda and Satou,2025;SáNnchez-Serna等人,2025年)。同时,我们尚不了解punicatie evo-devo中的特定研究问题,例如,剪裁肌类型的演变或脊椎动物毛细胞和剪裁冠状感觉细胞之间的同源性。这项研究对于鉴定物种之间保守的基因至关重要,这些基因与差异的物种之间的基因,为跨皮物种或更广泛的后代人之间形态学差异的遗传基础提供了见解。本研究主题中编写的研究涉及四个主要主题,从而在亚细胞,细胞,器官和生物水平上推动了思想界限。它具有五个原始研究文章,一份简短的研究报告,四个评论和一篇观点文章的混合。简而言之,它们为分子网络,细胞行为和发育过程提供了新的见解,这些过程构成了束缚物的多样化及其在核核发展的背景下的演变。研究主题包括生态和进化前沿中的七个出版物,在细胞和发育生物学领域的前沿中有四个出版物。该研究主题展示了有关一系列调皮物种的原始研究,包括Ciona Robusta,Oikopleura dioica,Botrylloides Leachii和Polyandrocarpa Zorritensis。以及在所有11个出版物中考虑的调皮物种,它们
运动中采用技术的潜力是多种多样的。体育中的技术应用可以广泛地分为两个不同的类别:粉丝参与,参与和运动表现。虽然粉丝参与和体育媒体的消费历史上一直依赖于传统技术,例如卫星和有线电视广播,但数字技术的最新创新已被证明是粉丝如何参与职业体育的概括点。数字消费和参与模式,也许最好用幻想运动(FS)为例,为粉丝们开辟了新的途径,以与他们喜欢的运动联系。狂热者长期以来一直是许多人对许多人的热情的表达,如今的技术通过为更加知识和周到的粉丝群创造更具互动体验来放大。这导致了几种积极的影响,从而为运动员和球队提供了更大,更忠诚的追随者,这为这些运动的发展和发展提供了更多的资源。
了解感官外围的刺激是如何进行重新格式化以产生有用表示的是神经科学的一个有趣的挑战。在嗅觉中,评估气味浓度是许多行为(例如跟踪和导航)的关键。最初,随着气味浓度的增加,第一阶感觉神经元的平均响应也会增加。,二阶神经元的平均响应仍会随着浓度的增加而浮出水面 - 这种转化是有助于浓度不变的气味识别,但似乎在将其发送到更高的大脑区域之前似乎会丢弃浓度信息。通过将来自不同物种的神经数据与计算模型相结合,我们提出了策略,尽管人口水平的平均反应平均反应,但二阶神经元通过该策略提供了浓度。我们发现,个体的二阶神经具有不同的浓度响应曲线,这些响应曲线是每个气味的独特曲线 - 有些神经元的反应更高,而另一些神经元的反应较少,而这些神经元的反应较少,而这种不同的差异共同产生了不同的组合表示,以使浓度不同。我们表明,可以使用电路计算(称为分裂性变种)来概括此编码方案,并且我们得出了这种偏差的能力条件。然后,我们讨论了两种机制(基于峰值速率与时序),高阶大脑区域可以通过重新格式表示的气味浓度来解释气味浓度。由于脊椎动物和无脊椎动物嗅觉系统很可能是依赖进化的,因此我们的发现表明,尽管新的电路结构存在明显的差异,但仍在相似的算法溶液上汇聚。最后,在陆地脊椎动物中,平行的嗅觉途径已经进化,其二阶神经元没有表现出如此多样化的响应曲线。相反,该途径中的神经元平均以更单一的方式表示浓度信息,从而使气味更容易地进行和识别,而牺牲了能源利用来增加。
摘要。近年来,由于观察和/或计算机约束,由于全球冰川进化模型代码以及空间广泛的地理验证数据的可用性,因此,由于观察和/或计算的约束,在预先明显不可行的地区开发和验证冰川模型。热带安第斯山脉中的冰川代表了世界上观察到的一些最少和建模的冰川,使其在气候变化下的轨迹不确定。迄今为止的研究通常采用了表面能量平衡和冰流的经验模型,以模拟气候变化下的冰川进化,但是这些可能会错过未来冰川质量变化的重要非线性。我们结合了两种具有全球能力的建模代码,可提供这些过程的物理表现:(i)英国联合土地环境模拟器(Jules)解决了雪和冰的全部能量平衡,以及(ii)开放的全球冰川模型(OGGM),该模型(OGGM)解决了划定层次繁殖的shllow-ice-ice ecementing of the Hallow-ice-ace-ice equalitation equiplation equiplation cool coply cop&repl&repl&repl。Jules – Oggm适用于秘鲁Vilcanota-urubamba盆地的500多个热带冰川,这是80万人的所在地,这些人主要居住在社会经济发展较低的农村社区,并且易于气候变化。该模型是针对可用的冰川和大地质量平衡观测值评估的,以实现使用建模工作流的潜力,以模拟十年时间表上的热带冰川进化。我们表明Jules -OGGM模型可以参数化
B. Amann,E。Chaumillon,Sabine Schmidt,L。Olivier,J。Jupin等人。在法国大西洋海岸的盐马什中,沉积物积聚的多年和多年代进化:对碳的影响。河口,沿海和货架科学,2023,293,pp.108467。10.1016/j.ecs.2023.108467。hal-04252550
Valley Delmech,Nadia Perthat,Oriane Monet,外国Marion,Darii Ecataria和Al。插入Methabolia,2022,72,pp.200-214。10.1016/j.ymben.2022.03.010。
通过挖掘现代数据库来寻找具有特定功能的蛋白质,可能会导致从医学和生物技术到Material Science的广泛领域的重大进步。当前可用的算法可以根据其序列或结构来挖掘蛋白质。然而,许多蛋白质的活性,例如酶和药物靶标,是由活性位点残基及其周围环境而不是蛋白质的整体结构或序列决定的。在这里,我们提出了ActSeek(一个由计算机视觉启发的快速程序),该程序搜索具有类似种子蛋白质的活性位点的蛋白质的结构数据库。ActSeek实施从Alphafold数据库中使用所需的活动站点环境开采Proinins。通过发现可用于生产可生物降解的塑料或降解塑料的酶以及对常见药物分子的潜在非目标,可以证明ActSeek为世界上最紧迫的挑战找到创新解决方案的潜力。
摘要在刚果民主共和国正在进行的一种I Monkeypox病毒(MPXV)爆发。在非非洲国家,已经报道了与旅行相关的进化枝I MPXV感染。2024年11月,加利福尼亚州的圣马特奥县卫生卫生确定了一份电子实验室报告,其中一份针对聚合酶链反应结果的结果暗示了最近从东非回来的男性旅行者MPXV感染。与加利福尼亚公共卫生部(CDPH)交往后,县卫生部门的工作人员在同一天在他的家中访问了该患者,并获得了皮肤脓疱标本,以进行加急的MPXV测试。进化枝I MPXV。这是美洲第一个报道的MPXV感染。在83个确定的接触中,有5个接收了jynneos vac Cine作为暴露后预防。所有联系人均已监测21天;未发现次要病例。患有MPOX兼容病变或临床特征的患者应接受MPXV测试,并且医疗保健提供者应立即将可疑的IMPXV感染(例如,MPOX表现和旅行历史)通知公共卫生机构(例如,MPOX表现和旅行历史记录与正在进行的进化枝I MPXV传输)或在接受II MPXV传播的区域)或II MMPXV clade clade clade clade clade dna dna dna dna dna dna dna dna dna dna。无法检测的测试结果触发其他测试,并促进基于传输的预防措施和其他预防性公共卫生干预措施的快速实施。
Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在材料的信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您将需要直接从版权所有者获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
1 巴黎萨克雷大学,古斯塔夫鲁西,INSERM U981,维尔瑞夫; 2 药物开发部(DITEP),Gustave Roussy,维尔瑞夫; 3 维尔瑞夫古斯塔夫鲁西肿瘤医学系; 4 PRISM 研究所,Gustave Roussy,维尔瑞夫; 5 巴黎萨克雷大学 INSERM 生物统计学和流行病学办公室,Gustave Roussy,Oncostat U1018,标记为 Ligue Contre le Cancer,Villejuif; 6 实验和转化病理学平台(PETRA)、基因组平台 - 分子生物病理学单位(BMO)和生物资源中心、AMMICA、INSERM US23/CNRS UMS3655、Gustave Roussy、巴黎萨克雷大学、维尔瑞夫; 7 维尔瑞夫古斯塔夫鲁西医学生物学和病理学系; 8 介入放射学系,Gustave Roussy,维尔瑞夫; 9 法国马赛艾克斯马赛大学、法国国立科学研究院、法国国家健康与医学研究院、法国马赛临床医学研究中心
