1 UMR 5554 ISEM(IRD,UM,CNRS,EPHE),UNIV MONZONLIER,PACA EUGENE BATAILON,34095 MONTPELLIER CEDEX 5,法国2,Museum 2 Museum Naturkunde,Leibniz Institute for Evolution and Biovive Science Institute for Invelosity and Bioviverity Science,Invalidstr。 div>43,10115德国柏林3 CEFE,CEFE,UNIV MONTPELLIER,CNRS,EPHE-PPSL大学,IRD,IRD,CNRS校园1919 De Mende,34293 Montpellier Cedex Cedex 5 France 5 France 4次生生态实验室,沿海研究,海洋研究部沿海地区,海洋研究部。 Chile, Santiago, Casilla 114-D, Santiago, Chile 5 Institute of Environmental and Evolutionary Sciences (ICAEV), Universidad Austral de Chile, Valdivia, Chile 6 Ictioplankton Laboratory (Labiti), Institute of Biologist, Faculty of Sciences, University of Valparas of Valparaso, Chile 8 Millennium nucleus for Ecology and Conservation of Temperate中间礁生态系统(Nutme)
我们研究了1C进化枝中植物疫霉及其近亲的进化史。我们使用了来自1C进化枝中69个植物菌属分离株的整个基因组序列数据,并进行了一系列基因组分析,包括核苷酸介入性评估,最大似然树,网络评估,最新共同祖先和迁移分析的时间。我们始终确定了两种墨西哥植物疫霉菌的明显且后来的分歧,第1页。mirabilis和p。ipomoeae,来自p。Infestans和其他1C进化枝种。phytophthora Infestans与来自南美的其他1C进化枝种类表现出较新的分歧。Andina和p。 betacei。 在1C进化枝中的形成和p的演变。 Infestans发生在安第斯山脉中。 p。 Andina – p。 betacei – p。 Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。 更重要的是,现代墨西哥和南美p之间的区别。 Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。 混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。 历史p。 从1845 - 1889年收集的 Infestans是第一个与所有其他p分歧的人。 Infestans人群。 现代南美人口下一步,墨西哥人口以后的血统。 Infestans。Andina和p。betacei。在1C进化枝中的形成和p的演变。Infestans发生在安第斯山脉中。p。Andina – p。 betacei – p。 Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。 更重要的是,现代墨西哥和南美p之间的区别。 Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。 混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。 历史p。 从1845 - 1889年收集的 Infestans是第一个与所有其他p分歧的人。 Infestans人群。 现代南美人口下一步,墨西哥人口以后的血统。 Infestans。Andina – p。betacei – p。Infestans形成了一个物种复合物,具有模糊的物种边界,物种之间的杂交以及与共同血统的短时间。更重要的是,现代墨西哥和南美p之间的区别。Infestans证明较少离散,表明随着时间的推移,人群之间的基因流动。混合分析表明,这些人群之间存在复杂的关系,暗示了这些区域之间的潜在基因流动。历史p。Infestans是第一个与所有其他p分歧的人。Infestans人群。现代南美人口下一步,墨西哥人口以后的血统。Infestans。两个人群均来自历史p。基于p的发散时间。来自其最亲密的亲戚的Infestans,p。Andina和p。 Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。 Infestans,现代全球化有助于p之间的混合。 今天来自墨西哥,安第斯山脉和欧洲的人口。Andina和p。Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。 Infestans,现代全球化有助于p之间的混合。 今天来自墨西哥,安第斯山脉和欧洲的人口。Betacei在安第斯山脉地区,我们认为安第斯山脉是p的原产地。Infestans,现代全球化有助于p之间的混合。今天来自墨西哥,安第斯山脉和欧洲的人口。今天来自墨西哥,安第斯山脉和欧洲的人口。
(a)Q. Alba基因组组装的HAPA和HAPB之间的结构同步。两个反转超过1 Mb:3染色体上的1.1 Mb反转和染色体上的1.9 Mb反转。35S阵列的位置用红色正方形表示,5S阵列用红色圆圈表示。(b)中期染色体用两对35(绿色)和一对5s(红色)rDNA信号扩散。小型35S信号由白色箭头指示。
au:PleaseconfirmthatalheadinglevelsarerepresentedCorrecty:生物多样性似乎在许多动植物和动物系统中强烈抑制病原体和害虫。然而,这种“稀释效应”并未始终如一地检测到,当存在时可能会在大小上变化。在这里,我们使用来自25,000多个地块(> 110万种采样的树木)的森林库存数据来量化稀释对数十个森林害虫的效果的强度,并阐明为什么某些害虫对生物多样性特别敏感。使用贝叶斯层模型,我们表明,在高度多样化的森林中,害虫患病率通常较低,但是在害虫中这种稀释效应的幅度存在很大的变化。稀释的强度与宿主专业化或害虫耶稣降生没有密切相关。相反,在同时存在的树种与害虫的首选宿主相关的森林中,害虫患病率较低。我们的分析表明,宿主进化的历史和森林组成是了解物种多样性如何稀释树害虫的影响的关键,对预测未来生物多样性的变化如何影响破坏性森林害虫的传播和分布有重要意义。
抽象的许多雌鱿鱼和墨鱼具有共生生殖器官,称为辅助性nidamental腺体(ANG),该器是一个与病原体和结垢生物有关的细菌财团。虽然在多个头足动物家族中发现了ANG,但对这些ANG细菌共生体的全球微生物多样性知之甚少。我们使用16S rRNA基因社区分析来表征来自不同头足类物种的ANG微生物组,并评估宿主和共生系统发育之间的关系。从四个家族(超级订购:decapodiformes)的11种头足类动物的ANG微生物组被表征了7个地理位置。在所有物种中都发现了类载脑杆菌,γ死记菌和黄酮菌的细菌,但通过多个距离指标对扩增子序列变异的分析揭示了头足动物家族的Ang微生物组之间存在显着差异(加权/未加重/未加重/未加重的Unifrac unifrac,bray – bray – bray – ccurtis,p = 0.001),P = 0.001。尽管是从广泛不同的地理位置收集的,但sepiolidae(bobtail squid)的成员共享了许多细菌分类群,包括(〜50%)Opitutae(verrucomicrobia)和Ruegeria(ruegeria)和Ruegeria(Alphaproteobacteria)物种。此外,我们测试了系统生物的生物病,发现宿主系统发育距离与细菌群落差异之间存在正相关(Mantel测试r = 0.7)。这些数据表明,与类似细菌分类单元的不同共生体选择密切相关的sepiolids。总体而言,不同头足类物种的ANG具有不同的微生物组,因此为探索抗菌活性和其他功能作用提供了多样化的共生体群落。
paramyxoviruses的磷蛋白基因编码多种蛋白质产物。P,V和W蛋白是通过转录滑动产生的。此过程导致在保守的编辑位点将未模拟的鸟苷核苷插入mRNA中。p蛋白是病毒RNA聚合酶的重要组成部分,并且由大多数帕糖病毒中的基因的直接副本编码。但是,在某些情况下,非必需的V蛋白默认编码,并且必须将鸟氨酸插入mRNA中以编码P。插入的鸟氨酸的数量可以通过病毒之间变化的概率分布来描述。在本文中,我们回顾了这些分布的性质,这些分布可以从mRNA测序数据中推断出来,并重建了paramyxovirus家族中共转录编辑的进化历史。我们的模型表明,在整个家庭的已知历史中,系统已从P默认值转换为V默认模式四次。编辑系统的完全丢失已经发生了两次,V蛋白的典型锌纤维结构域已被删除或再次突变两次,W蛋白已经独立演变了三次新型功能。最后,我们通过病毒RNA聚合酶的滑动来回顾共转录编辑的物理机制。