系统发育树是一个分支图,代表基于物理或遗传相似性和差异的物种或分类单元之间的进化关系。它说明了他们共同的进化史和祖先的共同历史,在地球上所有生命在理论上都是单个系统发育树的一部分。计算系统发育学使用算法来确定这些关系的最准确表示。在数学优化的语言中,系统发育树是一棵所谓的施泰纳树(第三级)。尽管史坦纳树在文献中得到了很好的研究,但理论上很难(NP-hard)和实践。在本论文中,我们专注于建造施泰纳树。以瑞士数学家Jakob Steiner命名的Steiner树问题是组合优化问题,也是对最小跨越树的概括。最小跨越的树将图中的所有节点连接到最小的边缘长度总和最小的树中。相比之下,斯坦纳树可能包括预定义集合中的其他节点,以进一步最大程度地减少整个网络长度,从而使选择最佳施泰纳点具有挑战性。对于系统发育树,这种施泰纳指向进化史上的祖先。由于进化史受到不利影响的影响,因此也需要考虑后者。硕士论文的第一部分是关于系统发育和施泰纳树的文献的摘要。论文应该从应进一步发展的现有算法思想开始。主要贡献应该是通过利用贝叶斯方法在不确定性下优化植物树的算法的开发和实施。该论文主题来自与地理Nordbayern(FAU)的合作。
宏基因组学的关键方法之一是DNA测序,这使我们能够确定微生物群落的遗传含量。高通量测序技术,例如下一代测序(NGS),通过从环境样品中对大量DNA进行快速且具有成本效益的测序,彻底改变了宏基因组学。元基因组测序生成大量数据,然后可以使用生物信息学工具对其进行分析,以识别和表征样本中存在的不同微生物分类单元,以及它们的功能潜力。宏基因组数据也可用于重建未培养的微生物的整个基因组,从而提供有关其生理学,代谢和进化史的见解。
docente:克里斯蒂安·卡皮利(Cristian Capelli)教授的化石遗骸分子分析(“古代DNA”)代表了近年来引起了浓厚兴趣的研究领域之一,不仅在该领域的专业人员中。可以重建过去有机体的DNA的想法无疑具有超越科学期刊页面的魅力,并轻松吸引了公众的注意。在本课程中,我们将探讨什么是古老的DNA以及如何从考古,历史和博物馆遗体中回收的生物材料。我们将检查这种方法的局限性和潜力,并对塑造其发展的事件进行积极和负面的构成。最后,我们将分析一些最重要的结果,尤其是那些与理解我们物种的进化史 *HOMO SAPIENS *相关的结果。
•比较和对比有丝分裂和减数分裂的基本特征,重点是这些细胞生殖过程中同源染色体的运动。•提出科学问题,提出书面假设,作为该问题的初步答案,并在特定实验的背景下产生与该假设一致的可观察到的预测。•展示了对分子系统发育学的理解,包括追踪基因进化史的概念(例如基因复制,水平基因转移)。•描述细胞器的基本结构和功能。•描述光合作用的组成部分以及每个组件的主要步骤和产品。•描述细菌,古细菌和真核生物之间的最基本相似性和差异,以及“生物”与动物,植物和真菌之间的进化关系。
简单摘要:猫的认知健康与它们的福祉和生活质量密切相关。猫科认知包括猫接收,处理和响应感官信息的能力。尽管近年来围绕猫科学认知的研究一直在增加,并导致了有关猫的认知能力的新发现,但有关该主题的研究仍然有很多了解。本综述讨论了家猫的进化史以及它如何成为心爱的伴侣动物,描述了基于开创性的研究和认知评估的猫的认知功能的了解,并研究了营养对认知健康的影响,尤其是与年龄相关的认知能力下降。通过考虑目前对猫的心理健康以及它们的认知如何受到外部因素的影响,以及通过识别和缩小我们知识的差距的知识,我们可以帮助改善猫的福利和生活质量。
质体,特异性细胞器分化为几种类型,包括在细胞分化和响应各种胁迫的过程中,包括光合作用的表现性叶绿体和淀粉蓄积的淀粉样品。这些特定类型的质体与名为Proplastids的原始类型的质体不同,这些质体通常在分生组织中在种子细胞或干细胞中发展(图1)。获得高塑料的质体将是植物在世界各地蓬勃发展和多样化的关键事件。然而,质体可塑性的进化史和分子机制在很大程度上尚不清楚。在这项研究中,我们旨在了解使塑料能够进行广泛分化的中心机制,并揭示植物如何调节开发过程中的机制和响应不断变化的环境。
通过推断进化史来重建生命之树是进化生物学的一个重要研究重点。系统发育重建还为植物学、动物学、系统地理学、考古学和生物人类学等一系列科学学科提供了有用的信息。在 20 世纪 60 年代和 70 年代蛋白质和 DNA 测序技术发展之前,系统发育重建都是基于化石记录和比较形态学/生理学分析。从那时起,分子系统发育学的进步弥补了基于表型的比较的一些不足。分子水平的比较提高了系统发育推断的准确性,因为 DNA/肽序列不受环境影响,并且序列相似性的评估不是主观的。虽然足够保守以进行系统发育推断的形态学/生理学特征数量有限,但分子数据提供了大量数据点,并能够对不同分类群进行比较。在过去 20 年里,分子
(初中/高级)和生命科学的研究生。课程描述本课程深入研究了大脑的发展方式以及我们的生活经历如何受到这种进化史的影响。我们将研究跨真核生物的认知的演变。在实验室中,我们参加了总体解剖解剖,以检查生物体之间的大规模变化以及细胞微结构的详细检查。实验室时间将为学生提供动手的大脑解剖,组织学和显微镜经验,而演讲将集中于解释认知机制和大脑组织的发展。作业使积极进取的学生能够发展专业技能并磨练他们的学术兴趣。作为4个学时课程,预计学生将在课程上花费大约8个小时的工作。概要:关于自然选择如何产生复杂的神经生物学结构以及大脑组织如何支持认知专业的基础调查。
其他动物(例如鸟类)具有原始的交流。在进化史的某个时刻,人类发展了发声的能力;这是一种更有效的交流方式。在非洲开设的利基市场;他们可以填补那个利基市场。这也与处理所有这些声音信息(交流处理)和人类进化的大脑的能力也共同发展。那些大脑较大的人可以进行更多的交流,并且可以进行更多的处理并具有选择性的优势。社会的形成导致了社会和集体信息处理。这对人声和书面能力以及能够处理所有这些信息的大脑具有失控的影响。此外,农业和集体生活的发展可能会花更多的时间专注于天文学和哲学等其他问题。研究这些问题将赋予人类的长期利益。几千年后,这些事件将在工业革命中达到顶峰,并将带来进一步的科学进步。
accidians是属于uroChordata和Superphylum Chordata的海洋无脊椎动物,被认为是脊椎动物最亲密的亲属之一(Delsuc等,2006; Denoeud等,2010; Satoh等,2014)。The cosmopolitan species Ciona intestinalis Type A (synonym for Ciona robusta ) has been employed as a model organism in various fields, including developmental biology, which have been markedly enhanced by genome sequenc- ing (Dehal et al., 2002; Satou et al., 2005), analysis of gene expression profiles (Imai et al., 2004, 2006, 2012; Azumi et al., 2007; Kawada等人,2017年; Matsubara等,2021年;转基因和基因编辑的Ciona(Sasakura等,2003,2017; Sasakura and Horie,2023)。这些研究为研究CIONA的胚胎发育和核的变形和弦的进化史做出了很大的作用。相比之下,我们对Ciona中卵泡发育途径的了解是lim-