生成的AI在应对各种设计挑战方面取得了重大进展。一个突出的区域在工程学中可以带来巨大的价值。特别是,选择一组最佳组件及其接口来创建满足设计要求的机械系统,是工程师最具挑战性和最耗时的任务之一。此配置设计任务由于其分类性质,多重设计要求而固有地具有挑战性,因此解决方案必须满足以及用于评估潜在解决方案的物理模拟的依赖。这些特征需要解决涉及黑框函数的多个约束的组合操作问题。为了应对这一挑战,我们提出了一个深刻的生成模型,以预测给定设计问题的合并和接口的最佳组合。为了阐明我们的方法,我们首先使用特定于域的语言,零件目录和物理模拟器来创建合成数据集,从而解决了齿轮序列的合成问题。然后,我们使用该数据集(名为GearFormer)训练基于变压器的模型,该模型不仅可以单独生成质量解决方案,还可以增强传统搜索方法,例如进化算法和Monte Carlo Tree搜索。我们表明,齿轮形式在满足指定的设计重新质量方面以更快的生成时间的订单来胜过此类搜索方法。此外,我们还展示了利用齿轮形式和搜索方法的混合方法的好处,从而进一步提高了解决方案的质量。
拓扑优化是功能最广泛的结构优化方法之一。但是,为了换取其高水平的设计自由,典型的拓扑优化无法避免存在多个本地Optima的多模态。这项研究的重点是开发无梯度拓扑优化框架,以避免被捕获不良的本地Optima。它的核心是数据驱动的多项性拓扑设计(MFTD)方法,其中通过求解低指标拓扑优化概率生成的设计候选者通过深入的生成模型和高级授权评估进行了更新。作为其关键组件,深层生成模型将原始数据压缩为低维歧管,即潜在空间,并随机将新的设计候选者安排在整个空间上。尽管原始框架是无梯度的,但其随机性可能导致结合变异性和过早收敛性。受到进化算法的流行跨界操作(EAS)的启发,本研究合并了数据驱动的MFTD框架,并提出了一种新的交叉操作,称为潜在交叉。我们将提出的方法应用于2D结构机械的最大应力最小化问题。结果表明,潜在跨界改善了与原始数据驱动的MFTD方法相对的收敛稳定性。此外,优化的设计表现出与使用p-norm测量的常规基于梯度的拓扑优化相当或更好的性能。[doi:10.1115/1.4064979]
特征转换旨在重建原始功能的特征空间,以增强下游模型的性能。然而,功能和操作的组合呈指数增长构成了挑战,因此现有方法很难有效探索宽阔的空间。此外,它们的优化仅由在特定域中下游模型的准确性驱动,从而忽略了一般特征知识的获取。为了填补这一研究空白,我们提出了一个用于自动特征转换的进化LLM框架。This framework con- sists of two parts: 1) constructing a multi-population database through an RL data collector while utilizing evolutionary al- gorithm strategies for database maintenance, and 2) utiliz- ing the ability of Large Language Model (LLM) in sequence understanding, we employ few-shot prompts to guide LLM in generating superior samples based on feature transforma- tion sequence distinction.利用多人口数据库最初提供了广泛的搜索范围,以发现出色的人群。通过淘汰和进化,高质量的人群获得了更多的机会,从而进一步追求最佳个人。通过将LLM与进化算法整合在一起,我们在庞大的空间内实现了有效的外观,同时利用特征知识来推动优化,从而实现了更适应性的搜索范式。最后,我们从经验上证明了我们提出的方法的效率和普遍性。
什么是机器智能?人工智能是一种数学计算或计算机控制机器执行任务的能力,通常由计算机、计算机控制机器或像人类大脑一样聪明地判断的程序执行。人工智能通过学习人类智力的模式并解决智力过程而变得熟练。这些研究的结果扩展了智能程序和算法。人工智能的历史以下是人工智能从诞生之日起六十年来发展的简要年表。 1956 年 - 约翰·麦卡锡 (John McCarthy) 创造了“机器智能”一词并举行了第一次人工智能会议。 1969 年 - Shakey 是第一台通用便携式机器。它是一种直接的智能噪音资产,带有一个功能,而不仅仅是高级命令。1997 年 - 超级计算机“深蓝”问世,在比赛中击败了世界冠军象棋选手。IBM 发明这种强大的计算机是一项巨大的成就。2002 年 - 第一台商业上成功的自动地毯清扫机问世。2005 年 - 2019 年 - 今天,我们拥有由机器人流程自动化 (RPA)、机器人、智能城市和其他创新技术开发或实现的语音识别。2020 年 - 百度向医疗和医疗保健组织发布了 LinearFold AI 解决方案,以在 SARS-CoV-2 (COVID-19) 全球爆发期间开发治疗方法。该算法仅用 27 秒就能预测出细菌的 RNA 序列,比其他系统快 120 倍 人工智能的组成部分机器学习图像识别电子设备专家系统智能机器人系统中的模糊计算机数据人工干预生物神经网络进化算法
被应用时,它必须模拟和控制整个创作过程。 “人工智能”一词是在20世纪中叶(1956年)汉诺威的一次会议上提出的。早在 1950 年,英国数学家阿兰·图灵就提出了机器平稳、渐进学习的理念——在所谓的成熟过程中积累信息。他提议“制造儿童机器”,这些机器能够逐渐独立成长,并学会在成人的水平上进行交流”[1,第 20 页] [455]目前用于训练人工智能的正是这种模型。它基于系统识别模式并从中学习的能力,无需人工干预即可提高其认知能力。神经网络和进化算法等人工智能范式主要模拟无意识推理和学习的方法。统计数据的处理和分析水平使得人工智能能够做出接近人类直觉猜测准确度的预测。欧盟委员会专家组根据人工智能所执行的任务,将其定义为“由人类开发的软件(也可能是硬件)系统,具有复杂的目标,在物理或数字维度上采取行动,通过收集数据来感知环境,解释收集到的结构化或非结构化数据,推理从这些数据中获得的知识或处理信息,并决定为实现目标而采取的最佳行动。 “人工智能系统可以使用符号规则或学习数值模型,并通过分析其先前的行为如何影响环境来调整其行为”[2,p. 16]。人工智能已经在建筑理论和设计实践中牢固确立。它已成为创建体积图像、开展前期项目和设计工作必不可少的工具。
元学习已经成为许多机器学习问题的强大工具。在为现实世界应用设计学习模型时需要考虑多种因素,具有多种目标的元学习引起了很多关注。但是,现有作品要么将多个目标结合到一个目标中,要么采用进化算法来处理它,在这种算法中,前者的方法需要支付高计算成本来调整组合系数,而后一种方法在计算上是沉重的,并且无法集成到基于梯度的优化中。为了减轻这些局限性,在本文中,我们旨在提出一个基于通用梯度的多目标元学习(MOML)框架,并在许多机器学习问题中进行了应用。特别是,MOML框架以多个目标作为多目标双级优化问题(MOBLP)制定了元学习的目标函数,其中高级子问题是解决了元元素的几个可能构成可能构成目标的目标。与现有作品不同,在本文中,我们提出了一种基于梯度的算法来解决MOBLP。特别是,我们通过分别通过梯度下降方法和基于梯度的多目标优化方法交替求解了基于第一个梯度的优化算法。从理论上讲,我们证明了收敛性,并对拟议的基于梯度的优化算法提供了非渐近分析。MOML的源代码可在https:// github .com /baijiong -lin /moml上找到。从经验上讲,广泛的实验证明了我们的理论结果合理,并证明了提出的MOML框架对不同学习问题的优越性,包括很少的学习,领域适应性,多任务学习,神经结构搜索和增强学习。
摘要 --- 参数设计对于确保功率转换器的整体性能令人满意具有重要意义。通常,功率转换器的电路参数设计包括两个过程:分析和推导过程和优化过程。现有的参数设计方法包括两种类型:传统方法、计算机辅助优化(CAO)方法。在传统方法中,需要严重依赖人。即使新兴的 CAO 方法使优化过程自动化,它们仍然需要手动的分析和推导过程。为了减轻对人的依赖以实现高精度和易于实施,本文提出了一种基于人工智能的设计(AI-D)方法用于功率转换器的参数设计。在提出的 AI-D 方法中,为了实现分析和推导过程的自动化,采用仿真工具和批量归一化神经网络(BN-NN)为优化目标和设计约束构建数据驱动模型。此外,为了实现优化过程的自动化,使用遗传算法来搜索最佳设计结果。所提出的 AI-D 方法在电动汽车 48 V 至 12 V 附件负载电源系统中同步 Buck 转换器的电路参数设计中得到了验证。给出了效率最优的同步 Buck 转换器的设计案例,该转换器在体积、电压纹波和电流纹波方面均有约束。最后,通过硬件实验验证了所提出的 AI-D 方法的可行性和准确性。索引术语 - 功率转换器、参数设计、人工智能、进化算法、神经网络。
在人类与疾病的长期斗争中,药物发挥着越来越重要的作用。药物发现是识别潜在的新治疗实体的过程,而药物设计是基于对生物靶标的了解寻找新药物的过程,涉及分子的设计(Zhou and Zhong,2017)。药物发现和设计一直面临障碍,因为需要大量的人力、物力和财力。随着人工智能在图像处理、模式识别和自然语言处理等领域的成功(Xie et al.,2022),深度生成模型在药物发现领域引起了广泛关注,同时在分子设计优化领域也展现出良好的应用前景。当使用生成模型生成分子时,其实质是学习训练集中分子的分布,然后生成与训练集中分子相似但不同的分子。结合进化算法或强化学习,可以进一步优化生成分子的性质(Tong et al.,2021;Tan et al.,2022a)。生成模型中的分子表示可以有多种形式,包括简化的分子输入行输入系统(SMILES)、分子图等。生成模型大致可分为五类,包括循环神经网络(RNN)、自编码器(AE)、生成攻击网络(GAN)、Transformer和结合强化学习(RL)的生成模型(Bhisetti and Fang,2022),如图1A所示。其中基于文本序列的分子生成模型(SMILES)应用最为广泛。本文简单介绍基于最新的文本序列分子设计(SMILES)的深度生成模型的基本原理及应用,以便读者了解深度生成模型并将其更好地运用在药物分子设计中。
由于传统能源资源的枯竭、温室气体排放、气候变化等,基于可再生能源 (RER) 的发电正成为当前和未来电力行业的主要来源。主要的 RER,包括太阳能、风能和小型水电,可在智能电网环境中提供可靠且可持续的解决方案。基于太阳能和风能的发电更为普遍,但性质各异,甚至无法非常有效地预测。因此,有必要整合两个或更多 RER 并开发混合能源系统 (HES)。HES 提供经济高效且可靠的电源,同时减少和/或几乎可以忽略不计的温室气体排放。出于经济和电力可靠性方面的考虑,组件的最佳尺寸对于开发最佳 HES 是必不可少的。近年来,元启发式进化算法已被广泛用于 HES 的最佳尺寸。哈里斯霍克优化器 (HHO) 是一种最近设计的元启发式搜索方法,能够发现全局最小值和最大值。然而,由于其开发能力较弱,基本 HHO 算法的局部搜索相当慢,收敛速度也较慢。因此,为了加速 HHO 的开发阶段,本研究开发了一种新方法,即以随机探索性搜索为中心的哈里斯霍克优化器 (hHHO-ES),用于优化 HES 的大小。针对各种众所周知的基准函数(包括单峰、多峰和固定维度),验证了建议的方法并将其与现有的优化方法进行了比较。随后,该方法被用于开发 HES,它将能够为电网供应稀缺的偏远地区提供电力。在一系列约束(例如系统组件的界限和可靠性)下,使用净现值 (NPC) 作为主要函数来制定目标函数。将获得的结果与和声搜索(HS)和粒子群优化(PSO)的结果进行了比较,发现其效果更佳。
研究人类行为和认知。人工智能 (AI) 算法的发展极大地扩展了 CPS 的潜力,为大脑中复杂和动态过程的建模提供了强大的工具。人工智能对 CPS 产生重大影响的一个领域是情绪识别领域。研究人员现在可以收集大量情绪面部表情数据集,并使用人工智能算法(如卷积神经网络 (CNN))来学习如何从这些图像中识别不同的情绪。这些模型可用于预测情绪在大脑中的表现方式以及情绪如何受到社会和环境因素的影响。人工智能算法还可用于优化计算模型的参数并提高其准确性和预测能力。例如,进化算法可用于搜索最适合实验数据的模型参数集,而强化学习算法可用于优化模型在复杂和动态环境中的决策策略。除了情绪识别之外,人工智能还被用于 CPS 来模拟其他认知过程,例如决策、学习和记忆。例如,深度学习算法已被用来开发大脑如何学习和表示视觉和听觉刺激的模型,而强化学习算法已被用来模拟大脑如何在不确定和变化的环境中做出决策。总的来说,人工智能和 CPS 之间的联系有可能为人类行为和认知的计算基础提供新的见解,并开发出可以改善人类福祉的新干预措施和技术。然而,这一领域也引发了重要的伦理和社会问题,例如人工智能对隐私、社会不平等和未来工作的潜在影响。随着人工智能和 CPS 的不断发展,重要的是要仔细考虑这些问题,并确保以有利于整个社会的方式使用这些技术。关键词:计算心理学;人工智能;智能系统;人类行为