div>duškoLainšček博士提供了有关脂质纳米颗粒(LNP)的一般知识,并在各种货物交付中有效地使用了它们。组成(可离子脂质,辅助脂质,胆固醇)也阐明了,还讨论了PEG脂质和DOTAP添加的作用,以分别辅助特定细胞的靶向和提高RNP封装效率。有关剂量和管理途径的研究。此外,提出了使用LNP的临床方面的临床方面是基于ASS CRISPR的临床试验,并提出了使用LNP的临床试验。LNP可以用mRNA或RNP的形式用作CRISPR/CAS系统的强大交付工具。Jure Bohinc,一名博士生也在众议院建立的重组CAS9蛋白隔离和纯化的方案中提出。LNP产生以及递送,生物抗化和吸收机制。特别强调体内递送以及如何实现被动和主动靶向,尤其是在体内递送大脑,绕过了LNP的局限性及其血脑屏障的局限性。2。Dhanu Gupta(半页)
摘要:人工智能(AI)严重影响了各个部门,突破了技术和重新定义过程的界限。本文研究了AI进步的三个关键领域:用于软件开发的GitHub Copilot,长期记忆(LSTM)网络检测假新闻以及AI对运输的更大影响。Github副副词是AI-Power Edsing Assistant,正在彻底改变开发人员编写代码的方式。LSTM,一种复发性神经网络(RNN)的形式,提供了一种有效的解决方案来检测错误信息。最后,AI通过自动驾驶车辆和交通管理对运输的贡献,展示了AI如何重塑运输领域的基础设施,安全性和效率。本文旨在全面了解这些技术的工作方式及其社会影响。
BioMedical Engineering Group,NeoSoma Inc.,NeoSoma Inc.,美国马萨诸塞州格罗顿,美国马萨诸塞州(原始机构地址:44 Farmers Row,Groton,Massachusetts,USA 01450)(A.H.A,A.A,A.A.,M.H.,M.H. );瑞士伯尔尼大学Artorg生物医学工程集团(M.Me.,M.R。 );埃及开罗大学医学院放射科(A.B.,M.Q.,S.M.,M.M. );美国德克萨斯州休斯顿休斯顿卫理公会医院放射科(P.D.,S.H.F. ) );加利福尼亚大学洛杉矶分校放射科,美国加利福尼亚州洛杉矶(K.N. ) );马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州的放射科(S.R. ) );马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州的放射科(V.K.,A.K.,T.S。 );美国康涅狄格州纽黑文市耶鲁大学医学院放射科(A.Ku. );瑞士苏黎世大学辐射肿瘤学系(N.A.,J.W。 );德国开罗和雷根斯堡大学医院雷根斯堡大学医院辐射肿瘤科(A.B. );佛罗里达大学放射科,美国佛罗里达州盖恩斯维尔大学(R.D.J.,I.T。 );美国新泽西州爱迪生的Hackensack Meridian Health JFK医学中心HACKENSACK MERIDIAN HEALTH SHITHER CENTRAL NEUROLOGY/ NEURO-CONCOLOGY部(J.C.L. div> );加利福尼亚大学洛杉矶分校,美国加利福尼亚州洛杉矶分校(C.R.,B.M.E。)BioMedical Engineering Group,NeoSoma Inc.,NeoSoma Inc.,美国马萨诸塞州格罗顿,美国马萨诸塞州(原始机构地址:44 Farmers Row,Groton,Massachusetts,USA 01450)(A.H.A,A.A,A.A.,M.H.,M.H.);瑞士伯尔尼大学Artorg生物医学工程集团(M.Me.,M.R。);埃及开罗大学医学院放射科(A.B.,M.Q.,S.M.,M.M.);美国德克萨斯州休斯顿休斯顿卫理公会医院放射科(P.D.,S.H.F.);加利福尼亚大学洛杉矶分校放射科,美国加利福尼亚州洛杉矶(K.N.);马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州的放射科(S.R.);马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州的放射科(V.K.,A.K.,T.S。);美国康涅狄格州纽黑文市耶鲁大学医学院放射科(A.Ku.);瑞士苏黎世大学辐射肿瘤学系(N.A.,J.W。);德国开罗和雷根斯堡大学医院雷根斯堡大学医院辐射肿瘤科(A.B.);佛罗里达大学放射科,美国佛罗里达州盖恩斯维尔大学(R.D.J.,I.T。);美国新泽西州爱迪生的Hackensack Meridian Health JFK医学中心HACKENSACK MERIDIAN HEALTH SHITHER CENTRAL NEUROLOGY/ NEURO-CONCOLOGY部(J.C.L. div>);加利福尼亚大学洛杉矶分校,美国加利福尼亚州洛杉矶分校(C.R.,B.M.E。)
刺痛(干扰素基因的刺激剂)途径在激活先天免疫方面至关重要,使其成为癌症免疫疗法的有希望的靶标。激动剂表现出了增强免疫反应的潜力,尤其是在对传统疗法抗性的肿瘤中。这篇学术评论研究了刺痛激动剂的各种类别,包括CDN类似物,非CDN化学型,注入CDN的外泌体,工程细菌载体和小分子核酸的杂化结构。我们强调了它们的机制,临床试验进度和治疗结果。尽管这些代理人提供了显着的希望,但毒性,肿瘤异质性和递送方法等挑战仍然是其更广泛的临床使用的障碍。正在进行的研究和创新对于克服这些障碍至关重要。激动剂可以通过利用人体的免疫系统靶向和消除癌细胞来在癌症治疗中起变革性的作用,尤其是对于难以治疗恶性肿瘤的患者。
审查深度脑刺激(DBS)的抽象目的是在包括帕金森氏病,肌张力障碍,震颤和图雷特综合征在内的多种运动障碍中建立的治疗方法。在这篇评论中,我们将审查并讨论最新发现,包括但不限于临床证据。最新发现的新DBS技术包括新型硬件设计(电极,电缆,植入脉冲发生器),可实现新的刺激模式和适应性DBS,可为患者病情的瞬间变化量身定制潜在的刺激。更好地理解运动障碍的病理生理学和功能解剖学对于研究DBS对脑脑运动区域,Meynert核心核的影响的影响至关重要。最终,神经外科实践通过更准确的目标可视化或组合靶向进行了改善。一个上升的研究领域强调桥接神经调节和神经保护。总结DBS治疗的最新进展带来了更多的可能性,可以有效治疗运动障碍的人。未来的研究将着重于改善自适应DB,领导更多有关新目标的临床试验,并探索神经调节对神经保护作用。
衣原体沙眼,一种衣原体,对人类健康的影响最大,是细菌性传播疾病的主要原因,并且在所有Chamydia spp中都可以预防失明。物种。胸部寄生虫的强制性细胞内寄生虫和独特的双相发育周期是开发遗传操作工具的主要障碍。过去十年见证了对气管梭菌的遗传操纵,包括化学诱变,基于II组内含子的靶向基因敲除,荧光报告的等位基因交换诱变(FRAEM),CRISPR干扰(CRISPRI)和最近开发的转载体诱变。在这篇综述中,我们讨论了沙眼梭状芽孢杆菌的遗传操纵的当前状态,并突出了衣原体遗传学新生田中的新挑战。
嵌合抗原受体T(CAR-T)细胞疗法已彻底改变了血液学恶性肿瘤的治疗,可以改善患者的结局和预后。但是,其应用引入了新的挑战,例如安全问题,非目标毒性和显着费用。天然杀手(NK)细胞是先天免疫系统的关键组成部分,能够消除肿瘤细胞而无需事先暴露于特定抗原或预激活之前。这种固有的优势补充了T细胞的局限性,使CAR-NK细胞疗法成为血液学肿瘤免疫疗法的有前途的途径。近年来,临床前和临床研究产生了支持CAR-NK细胞疗法在血液系统恶性肿瘤中的安全性和有效性的初步证据,为免疫疗法的未来进步铺平了道路。本综述旨在简洁地讨论与Car-NK细胞疗法相关的特征,显着的治疗进展以及潜在的挑战。
近年来,细胞疗法为有希望的新药提供了理想的特性。间充质干细胞由于其固有特性(包括免疫调节,归巢能力和肿瘤tropism)而成为发展基因工程和药物输送策略的有希望的候选者。正在研究间充质干细胞的治疗潜力,以进行癌症治疗,炎症和纤维化疾病等。间充质干细胞由于其固有的归巢能力而是合成纳米颗粒的吸引人的细胞载体。在这篇综述中,我们全面讨论了间质干细胞的各种遗传和非遗传策略及其在药物递送,肿瘤治疗,免疫调节,组织再生和其他领域中的衍生物。此外,我们讨论了干细胞疗法的当前局限性以及临床翻译中的挑战,旨在确定重要的发展领域和潜在的未来方向。
本丛书旨在介绍关键基础设施系统和信息物理系统的风险、安全性和可靠性的最新研究、研究和最佳工程实践、实际应用和实际案例研究。本丛书将涵盖网络关键基础设施的风险、故障和漏洞的建模、分析、框架、数字孪生模拟,并提供 ICT 方法以确保保护和避免破坏经济、公用事业供应网络、电信、运输等重要领域。在公民的日常生活中。将分析关键基础设施的网络和现实性质的交织,并揭示关键基础设施系统的风险、安全性和可靠性挑战。通过整个云到物连续体技术的感知和处理提供的计算智能将成为实时检测网络关键基础设施中的风险、威胁、异常等的基础。并将促使采取人为和自动保护行动。最后,将寻求对政策制定者、管理者、地方和政府管理部门以及全球国际组织的研究和建议。
