摘要 人们普遍认为,投棒球时传递到球的大部分能量是由躯干和下肢产生的。因此,本研究的目的是评估投棒球时流经下肢的能量。假设(稳定的)前腿主要以从远端到近端的顺序作为动力链传递能量,而(驱动的)后腿产生大部分能量,主要在臀部。使用关节功率分析来确定 22 名青年投手的踝关节、膝盖、臀部和腰骶关节(L5-S1)的能量(功率)传递和产生率。分析表明,前腿主要在跨步脚接触之前以从远端到近端的顺序向上传递能量。此外,后腿产生的能量更高,主要来自后臀部。总之,双腿对能量流的贡献不同,其中前腿充当初始动力链组件,后腿通过产生能量来驱动俯仰。双腿的动作在骨盆中结合,并传递到后续更常讨论的开放动力链,从 L5-S1 开始。
人的一生中,大约有 4% - 5% 的人会患上结直肠癌 (CRC),其中高达 20% 的病例在初次诊断时已有远处转移 (1,2)。肺是 CRC 最常见的转移部位之一,约有 27% 的 CRC 患者患有该病 (3)。患有远处疾病的患者的 5 年生存率约为 12% (4)。虽然手术是治疗肺转移的常见选择,但消融已成为一种更好的选择,因为它可以在切除肿瘤的同时保留更多的肺组织和功能 (5)。另一方面,立体定向消融放射治疗 (SABR) 或热消融已成为局部治疗肺转移的最佳方法 (6)。微波消融 (MWA) 是一种局部热消融,通过带电粒子和极性分子的运动刺激凝固性坏死,目前是 CRC 肝和肺转移的主要治疗方法(6)。与射频消融 (RFA) 相比,微波消融 (MWA) 有几个优势,例如对较大的肿瘤加热效果更好,加热速度更快、效率更高,从而降低了对热沉效应的敏感性。MWA 特别适用于阻抗较高的组织,包括肺和骨骼,以及含水量高的组织,如实体器官和肿瘤(7)。肺微波射频 (LUMIRA) 随机试验显示,与 RFA 治疗相比,MWA 可减少术中疼痛并显著缩小肿瘤体积(8)。回顾性分析表明,经皮 MWA 是一种治疗肺恶性肿瘤的潜在安全有效的方法,并且可以提高不适合手术的患者的生存率(9)。远端效应是放射治疗中的一种现象,其特征是放射范围之外的肿瘤体积缩小。Mole 首先描述了它并发现在对原发性肿瘤或转移性肿瘤进行放射治疗后,未经治疗的肿瘤体积会缩小(10)。越来越多的证据表明,局部放射治疗可刺激全身抗肿瘤作用,远端未受照射部位的肿瘤会消退,即放射治疗的远端效应(11,12)。冷冻消融的远端效应也已被证明,在对原发性前列腺癌进行冷冻消融后,脊柱、肺和锁骨上淋巴结等远处转移灶会消失(13)。其他研究表明,冷冻消融可刺激强烈而复杂的免疫反应,并激活先天性和适应性免疫(14)。相反,关于微波消融的远端效应的报道很少。在临床工作中,我们团队发现一例难治性子宫内膜癌多发性肺转移患者在接受微波消融治疗后,出现了远隔效应,即一侧肺转移灶接受微波消融治疗,而其他肺转移灶消失,提示 MWA 刺激了完美的远隔效应 ( 15 )。我们还在另一例肺腺癌患者中观察到了远隔效应,该患者双肺多发转移。右肺两个结节用 MWA 治疗,2 个月的 Camrelizumab 治疗后双肺所有结节均消失,证实 MWA 和 PD-1 抑制剂联合治疗刺激了远隔效应 ( 16 )。然而,并非所有 CRC 患者
• 政府要求能力的进展 • 月球着陆(1 个月球日,最多 14 个地球日) • 南极着陆(PRIME-1、TO-19C) • ~500 公斤有效载荷(VIPER;TO20A) • 精密/复杂的有效载荷补充(TO-19D、CP-11) • 远端着陆(数据返回;CP-12)(STN 仪器) • 移动即服务(未来 TO CP-21) • 目标轨道交付(TO CS-3、CS-4)(STN 仪器) • 夜间着陆器生存(未来)
图2。DNA,SGRNA和蛋白质相互作用(a)(a)匹配的SPCAS9和(b)MM5-SPCAS9聚焦HNH催化位点和PAM(NGG)区域。(C&D)显示了匹配的和MM5的不同视图,从而缩放了PAM远端和RUVC区域相互作用。T-DNA,NT-DNA和SGRNA分别为颜色的洋红色,黄色和浅蓝色。SPCAS9,HNH和RUVC的两个核酸酶结构域以白色和深蓝色显示。
抽象变构可以动态控制蛋白质功能。一个范式的例子是DNA甲基化维持的紧密策划过程。尽管变构站点具有根本的重要性,但它们的识别仍然是高度挑战。在这里,我们对基于基于活动的抑制剂Decitabine的基本维护甲基化机制进行了CRISPR扫描,以发现调节DNMT1的变构机制。与非共价DNMT1抑制相反,基于活性的选择暗示了DNMT1功能中催化结构域以外的许多区域。通过计算分析,我们从活跃位点的DNMT1远端中识别出涵盖多层自身抑制性界面和未表征的BAH2结构域的突变的远端突变点。我们将这些突变表征为功能获得,表现出增加的DNMT1活性。将我们的分析推送到UHRF1中,我们辨别了多个域中的功能收益突变,包括跨自抑制性TTD – PBR界面的关键残基。共同研究了基于活动的CRISPR扫描以提名候选变构站点的实用性,更广泛地介绍了新的分析工具,从而进一步完善了CRISPR扫描框架。
神经元和神经胶质是高度极化的细胞,其远端细胞质功能亚域需要特定的蛋白质。神经元具有轴突和树突状细胞质扩展,其中包含突触,其可塑性受mRNA转运和局部翻译有效调节。这些机制背后的原理对于解释远端神经胶质细胞质投影的快速局部调节(与其细胞核无关)同样有吸引力。然而,与神经元相比,mRNA定位在GLIA中几乎没有实验性关注。尽管如此,有许多功能多样的神经胶质亚型,其中包含长长的细胞质投影网络,其可能局部调节可能会影响神经元及其突触。此外,神经胶质具有许多其他类似神经元的特性,包括电活动,胶质递质的分泌和钙信号传导,例如突触传递,可塑性和轴突修剪。在这里,我们回顾了先前关于神经胶质转录本在影响突触可塑性方面重要作用的研究,重点是涉及局部翻译的一些情况。我们使用已经可用于神经元可用的尖端工具讨论了有关mRNA传输和Glia中局部翻译的各种重要问题。
胆管癌(CCA)是一种从胆道树出现的恶性肿瘤。基于癌症的统计数据,早期CCA患者的5年存活率为30%。如果肿瘤已扩散到区域淋巴结,则5年生存率为24%。如果CCA扩散到人体的遥远部分,则5年生存率下降到2%。CCA是异质的,目前被归类为肝内,肺门或围栏旁或远端CCA(图1)(1)。根据先前使用单个机构的564例CCA患者(2)的报告,肝内,疗程和远端CCA的发生率分别为8%,50%和42%(2)。CCA是仅次于肝细胞癌(HCC)的第二常见原发性肝恶性肿瘤,占原发性肝癌总肝癌的10-20%(1,3)。尽管它被认为是一种罕见的癌症,因为美国的估计发病率为每100,000人(1),但CCA是一种侵略性恶性肿瘤,其特征是早期诊断的困难,然后是治疗方案有限,预后不良和死亡率较高(4)。结果,在美国,5年生存率约为10%(5)。治愈性手术切除是唯一的有效治疗方法,但患者经常在手术后复发和转移。术后辅助化疗可以提高手术后的存活率和治愈率,但是化学疗法的作用有限,并且5年的生存率具有潜在的治疗手术的30%以下(6)。
本报告介绍了卵子股骨(大腿骨)的结构特征(明显和秘密)。绵羊模型通常在骨骼研究中使用,因为它与人类相似1。成熟的母羊的体重在50-80千克之间变化,后腿关节的大小约为人类同源关节的2/3。股骨是后肢骨骼的近端部分;它与骨盆近端表达,并与胫骨和the骨远端表达。静止绵羊中股骨的取向是屈曲(倾向于腹部),因此与通常在人类中通常观察到的股骨方向不同。卵股骨通常也比成年人类股骨短两倍。本报告中分析的右股骨是从当地的屠夫那里获得的,它起源于完全生长的动物,但品种和性别未知。样品的尺寸约为200毫米,轴区域(隔膜)的直径为20 mm,在近端和远端末端的最大尺寸(phickyses)的最大尺寸中约为40 mm。大多数动物的同源骨骼元素通常共享相同的“设计计划”,并且可以轻松地识别其解剖学特征。下面说明了该股骨的主要解剖标志。请注意,可以在人类或其他哺乳动物的股骨上识别相同的地标。
运动过程中,长远端肌腱(如跟腱)储存和释放的弹性应变能量可增强肌肉力量并降低运动能量消耗:由于远端肌腱在回弹过程中进行机械工作,跖屈肌纤维可以在较小的长度范围内、较慢的缩短速度和较低的激活水平下工作。很少有证据表明人类进化出长远端肌腱(或保留自我们更远的人科祖先)主要是为了实现较高的肌肉 - 肌腱功率输出,事实上,与许多其他物种相比,我们的力量仍然相对较弱。相反,大多数证据表明,这种肌腱的进化是为了降低总运动能量消耗。然而,长肌腱还有许多其他优势,通常未被认识到,据推测可能具有更大的进化优势,包括由于肌肉更短更轻而减少肢体惯性(减少近端肌肉力量需求),减少足部与地面碰撞时的能量耗散,能够储存和重复使用肌肉所做的工作以减弱足部与地面碰撞引起的振动,减少肌肉产热(从而降低核心温度),以及减轻工作引起的肌肉损伤。 总的来说,这些影响应该可以减少神经运动疲劳和运动用力感,使人类可以选择以更快的速度移动更长时间。 由于这些好处在更快的运动速度下更大,因此它们与以下假设一致:我们的祖先使用的跑步步态可能对跟腱长度产生了巨大的进化压力。因此,长跟腱可能是一种独特的适应性,它提供了许多生理、生物力学和心理方面的好处,从而影响了多种任务中的行为,包括运动和运动之外的行为。虽然能量成本可能是运动研究中感兴趣的变量,但未来的研究应该考虑影响我们运动能力的更广泛的因素,包括我们决定以特定速度移动给定距离,以便更充分地了解跟腱功能的影响以及该功能在身体活动、不活动、废用和疾病对运动表现的影响。
这项硅胶研究中的试验器比较了新的心脏恢复治疗(CRT)策略的影响,包括他的捆绑起搏(HBP),左捆绑分支(LBBP),以及合并的优化疗法(HOT-CRT和LOT-CRT)(HOT-CRT和LOT-CRT),在治疗左bun-aft bun-aft bun-afb左分支中(使用基于患者的临床数据(ECG和心脏计算机断层扫描(CT))的详细计算心脏模型,我们将特定的解剖学和电气特征重现以模拟不同的LBBB类型以及几种CRT策略。进行了100多次计算实验,以评估每种CRT技术对心脏电活动的影响,重点是心室激活时间和Electrical Out偶联。我们的结果表明CRT模态的可变效率取决于收集块的位置。特定的HBP和HOT-CRT对于近端LBBB最有效,而LBBP和Lot-Crt在远端LBBB中显示出显着的好处。相反,BIV-CRT在近端和远端LBBB中均显示出一致的效率。这在计算机方法中提供了一种有希望的途径,可以以患者的特定方式进行治疗干预措施,从而有可能改善CRT和CSP中的诊断能力和结果。