戈达德是美国宇航局首屈一指的太空飞行中心,也是美国最大的科学家、工程师和技术人员组织的所在地,他们建造航天器、仪器和新技术来研究地球、太阳、太阳系和宇宙。
本研究旨在强调基于将安全的,pyrolectric纳米颗粒掺入纤维的新世代功能纺织品材料的适用性。具有负离子发射特性的合成纤维含有半颗粒的石材颗粒(电气石,独居石,蛋白石),陶瓷,木炭,锆粉,硫硫酸盐,钛酸盐和此类矿物质的混合物。目前,通过引入矿物质获得产生pyroelectric效应的合成纤维(例如超精美的电气石粉)在旋转或通过将矿物分散到旋转溶液中之前融化聚合物。作为聚合物,聚乙烯三乙酸酯,乙酸聚氯乙烯,聚酰胺和粘胶均已使用。在低量中,这些矿物质几乎对人类健康没有影响。大量包含,它们往往太贵了(电气石,蛋白石),纤维变得苛刻而脆弱。当前的FIR功能纺织品材料面临一系列技术挑战:某些使用的化合物是放射性的(单济族);如果颗粒尺寸太大(0.2-0.3µm),则可能导致产生高度不均匀的纤维,并早期磨损机械零件的安装;大多数商业pyroelectric织物都散发出低量的负离子(500-2600阴离子/cc)和FI射线,从而诱导低健康效应。涉及暴露于地球化合物的临床研究突出了对:血液循环,皮肤细胞再生,胶原蛋白和弹性蛋白的产生,睡眠调节,伤口的愈合和微循环的愈合和加速度的加速,慢性疼痛管理,慢性疼痛管理,血管内皮功能的改善,动脉粥样硬化的影响,动脉粥样硬化等<<<<
Michele Martinazzo,Davide Magurno,William Cossich,Carmine Serio,Guido Masiello,Tiziano Maestri,评估远红外和中红外波长的缩放方法的准确性,定量光谱和辐射转移杂志,杂志
但是,AMP 也存在一些缺点,包括潜在的毒性、对蛋白酶的敏感性、自发或诱导的结构可塑性 [4,5] 和高生产成本,这些都限制了它们的商业化和临床的系统应用。虽然人们已经做出了广泛的尝试来克服这些障碍,但主要的研究方向集中在研究 AMP 的生物活性、其天然结构和在膜存在下的构象偏好之间的相互关系,以及它们有效的膜结合,[6] 以提供临床相关的配方。[7] 密度泛函理论模拟以及深度学习算法和分子动力学的结合构成了有前途的工具,可用于开发在特定条件下更快地发现有效和选择性 AMP 的理论依据,[8–10] 但这些方法仍然依赖实验数据来确定 AMP 和膜相互作用的结构与功能关系。因此,同时,开发分析工具的主要动力在于能够提供有关 AMP 结构、其分子特异性的详细信息,以及直接和快速探测其在生物适用环境中相互作用的性质和程度。[7,11,12] 必须应用互补方法来深入了解这些系统。[13,14]
但是,AMP 也存在一些缺点,包括潜在的毒性、对蛋白酶的敏感性、自发或诱导的结构可塑性 [4,5] 和高生产成本,这些都限制了它们的商业化和临床的系统应用。虽然人们已经做出了广泛的尝试来克服这些障碍,但主要的研究方向集中在研究 AMP 的生物活性、其天然结构和在膜存在下的构象偏好之间的相互关系,以及它们有效的膜结合,[6] 以提供临床相关的配方。[7] 密度泛函理论模拟以及深度学习算法和分子动力学的结合构成了有前途的工具,可用于开发在特定条件下更快地发现有效和选择性 AMP 的理论依据,[8–10] 但这些方法仍然依赖实验数据来确定 AMP 和膜相互作用的结构与功能关系。因此,同时,开发分析工具的主要动力在于能够提供有关 AMP 结构、其分子特异性的详细信息,以及直接和快速探测其在生物适用环境中相互作用的性质和程度。[7,11,12] 必须应用互补方法来深入了解这些系统。[13,14]
Q-1 对于 2023 年探测器 AO 任务主题,是否有特定的波长截止值用于排除或包含,以满足远红外或 X 射线探测器的定义?例如,远红外任务是否也可以包括中红外仪器,只要远红外仪器响应十年调查中概述的目标?A-1 关于探测器 AO 任务主题的唯一标准是响应 2020 年天文学和天体物理学十年调查、2020 年代天文学和天体物理学发现途径,如第 7.5.3.2 至 7.5.3.4 节所述。提议者有权争论响应性。天体物理学部不会使用波长来确定响应性,而是使用外部同行评审的标准流程来评估响应性。 Q-2 2023 年探测器 AO 社区公告指出,“NASA 中心的参与必须符合 NASA 的中心角色政策。”这是否意味着 GSFC 和 JPL 可以充当牵头中心,还是其他中心也包括在内?A-2 中心角色可在 NASA 中心角色文件中找到,该文件不公开。随着 NASA 中心角色文件的最新 2022 年更新,科学任务理事会 (SMD) 改变了竞争角色中小型/中型/大型任务的定义。此调整基于从 2016 年(首次确定水平时)到 2023 财年的通货膨胀率。新语言如下:
摘要 强太赫兹 (THz) 电场和磁瞬变开辟了科学和应用的新视野。我们回顾了实现具有极端场强的亚周期 THz 脉冲最有希望的方法。在双色中红外和远红外超短激光脉冲的非线性传播过程中,会产生长而粗的等离子体串,其中强光电流会导致强烈的 THz 瞬变。相应的 THz 电场和磁场强度分别可能达到千兆伏每厘米和千特斯拉的水平。这些 THz 场的强度使极端非线性光学和相对论物理学成为可能。我们从光物质与中红外和远红外超短激光脉冲相互作用的微观物理过程、这些激光场非线性传播的理论和数值进展以及迄今为止最重要的实验演示开始,进行了全面的回顾。
摘要:向太空发射的长波辐射 (OLR) 是地球能量预算的基本组成部分。有许多相互交织的物理过程会影响 OLR,并推动和应对气候变化。光谱解析观测可以解开这些过程,但技术限制阻碍了精确的空间光谱测量,覆盖 100 至 667 cm −1(波长在 15 至 100 µ m 之间)的远红外 (FIR)。因此,地球的 FIR 光谱基本上无法测量,即使至少一半的 OLR 来自此光谱范围。该地区受到对流层上部和平流层下部水蒸气、温度递减率、冰云分布和微物理的强烈影响,所有这些气候系统中的关键参数都变化很大,而且仍然很少被观察和理解。为了覆盖地球观测中这一未知领域,远红外外向辐射理解与监测 (FORUM) 任务最近被选为 ESA 的第九个地球探测器任务,将于 2026 年发射。FORUM 的主要目标是首次以高绝对精度测量光谱分辨 OLR 的远红外分量,具有高光谱分辨率和辐射精度。该任务将提供全球观测的基准数据集,这将大大增强我们对地球大气关键强迫和反馈过程的理解,从而能够更严格地评估气候模型。本文介绍了该任务的动机,强调了新测量预期带来的科学进步。
占用和运动探测器:超声波、微波运动、电容式占用、可见光和近红外光、远红外运动、PIR 运动、位置、位移和水平传感器:电位式、重力式、电容式、电感和磁式、光学、超声波、雷达位置、位移和水平传感器:电位式、重力式、电容式、电感和磁式、光学、超声波、雷达。速度和加速度传感器:电容式加速度计、压阻式加速度计、压电式加速度计、热加速度计、加热板加速度计、加热气体加速度计、陀螺仪、压电电缆 气体传感器:二氧化碳、一氧化碳、NOX、SOX、PM2.5、PM10、挥发性有机化合物 应用:制造业、机器人领域的案例研究