摘要 - 本文的目的是有助于更好地理解从识别到治疗的儿童视力护理,特别是更好地理解眼睛跟踪(ET)技术的使用。有迹象表明这些技术可以支持视力护理,但缺乏对可能性的全面理解。在这里,我们回顾了有关执行视力护理的跨学科研究,并确定了当前的使用和进一步开发ET技术的挑战。为此,我们描述了(1)所涉及的利益相关者,(2)在学校筛选可能性,以及(3)如何使用技术支持的视力筛查。数据来自对同行评审期刊和会议文章的文献调查,并得到了相关项目和产品的次要来源的补充。重点是2000年以后的文献,尤其是针对小学生筛查动目的功能障碍(OMD)。结果表明,来自各种研究领域的最新技术的贡献是分散的,特别是关于影响视觉护理的必要利益相关者之间的沟通,对一般和功能视觉护理的处理以及筛查和治疗之间的沟通。进一步的ET技术发展可能取决于克服这些碎片。朝这个方向迈出的第一步包括对利益相关者,角色和要求的详尽描述,使能够对有视力问题的儿童进行沟通。
巴黎,阿拉米斯项目团队,F-75013,法国巴黎,法国B. Institut du Cerveau et de la Moelle Epini ere, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universit e, Ecole Normale Sup erieure, ENS, Centre MEG-EEG, F-75013, Paris, France e Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104,宾夕法尼亚州宾夕法尼亚大学佩雷曼医学院,美国弗莱尔曼大学神经病学系,19104年,美国G物理与天文学系,艺术与科学学院,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,宾夕法尼亚大学,19104年,美国电气和系统工程学系,宾夕法尼亚州宾夕法尼亚州,宾夕法尼亚州pr。 19104年,美国I精神病学系,宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院,宾夕法尼亚州费城,19104年,美国J Santa Fe Institute,NM,NM,87501,美国,
重要通知:本文所述的德克萨斯州仪器及其子公司的产品和服务由TI的标准销售条款和条件出售。建议客户在下订单之前获得有关TI产品和服务的最新信息。ti对应用程序帮助,客户的应用或产品设计,软件性能或专利侵权不承担任何责任。发布有关任何其他公司产品或服务的信息并不构成TI的批准,保修或认可。
摘要。图像分割是一项复杂的任务,旨在同时符合各种质量标准。在这种情况下,拓扑越来越被考虑。保证正确的拓扑特性对于对物体的具有挑战性确实至关重要(例如,小,细长,多种形状。在医学成像中尤其如此。设计拓扑感知指标是相关的,既可以评估分割结果的质量又用于设计学习程序所涉及的损失。在本文中,我们介绍了CCDICE(连接的组件骰子),这是一种拓普式的拓扑指标,可概括流行的骰子评分。与骰子相比,该骰子的作用在像素的尺度上,CCDICE的作用在比较对象的相关组件的尺度上起作用,从而导致对其相对结构和嵌入的拓扑评估。CCDICE是一种简单,可解释的,归一化的和低计算的拓扑度量。我们提供了CCDICE的正式定义,CCDICE是一种用于计算它的算法方案,并通过比较其他常规拓扑指标来评估其行为,从而强调了其相关性。代码可在GitHub上找到:https://github.com/pierrerouge/ccdice。
WO 3纳米颗粒具有不同的载荷量(0.25至1.00 wt%),将SN – BI合金(10 wt%和20 wt%bi)机械混合45分钟。SN – BI纳米复合粉末与通量混合物混合,形成焊料。使用焊料糊状物将带有不同WO 3纳米颗粒的焊料粘贴沉积在纯Cu板上,并在275°C下加热180 s。研究了WO 3纳米颗粒对SN – 10 wt%BI焊料/Cu和Sn – 20 wt%BI焊料/CU焊接接头的微观结构,界面和粘结强度的影响。在两种焊料合金中添加较低量的WO 3纳米颗粒(0.25 wt%)都改善了其微结构和润湿性。向焊料中添加少量的0.25和0.50 wt%WO 3纳米颗粒将焊料基质中的粗伸长BI结构更改为细球形状,并形成了不连续的界面层,没有裂纹和/或微杆子。将0.25 wt%WO 3纳米颗粒添加到Sn – 20 wt%BI焊料中,将剪切强度提高到42.25 MPa,伸长率提高到7.1%,与普通之一的值相比,分别描绘了31.66%和208.70%的增加。
免疫原性细胞死亡(ICD)在临床上具有相关性,因为通过ICD杀死恶性细胞的细胞毒素会引起抗癌免疫反应,从而延长了化学疗法的影响,而不是治疗中断。ICD的特征是一系列刻板的变化,增加了垂死细胞的免疫原性:钙网蛋白在细胞表面的暴露,ATP的释放和高迁移率组Box 1蛋白以及I型Interferon反应。在这里,我们研究了抑制肿瘤激酶,间变性淋巴瘤激酶(ALK)的抑制可能性,可能会触发ICD在染色体易位因染色体易位而激活ALK的变性大细胞淋巴瘤(ALCL)中。多种证据辩称,有利于克唑替尼和塞替尼在ALK依赖性ALCL中的特异性ICD诱导作用:(i)它们在药理学相关的低浓度上诱导ICD Stigmata; (ii)可以通过ALK敲低模仿其ICD诱导效应; (iii)在支配碱性突变体的背景下失去了效果; (iv)通过抑制ALK下游运行的信号转导途径来模仿ICD诱导效应。当将经CERITIN的鼠类碱性ALCL细胞接种到免疫能力合成小鼠的左侧时,它们诱导了一种免疫反应,从而减慢了植入在右孔中的活Alcl细胞的生长。尽管Ceritinib诱导淋巴瘤小鼠的肿瘤的短暂收缩,无论其免疫能力如何,在免疫降低效率的背景下,复发频率更高,从而降低了Ceritinib对生存率的影响大约50%。完全治愈仅发生在免疫能力的小鼠中,并赋予了与表达同一碱性淋巴瘤的保护,但不与另一种无关的淋巴瘤进行保护。此外,PD-1阻滞的免疫疗法往往会提高治愈率。总的来说,这些结果支持了以下论点,即特异性ALK抑制作用通过诱导ICD诱导ALK-阳性ALCL刺激免疫系统。
KMT5B的机制和人类神经发育的机制。 Sheppard,S.E。 ; Brying,L。; Wickramascaker,R.N。 ;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.) ; Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。 ; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。 ; Lim,C.Y。 ;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr ; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。 ;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。 ;干燥,d。码头,d。 Wormanmann,S.B。 ; Kamstean,E.J。 ; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals ; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。 ;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。 ;伊斯兰教。 Sidlik,J.A。 ;亨德森(L.B.)KMT5B的机制和人类神经发育的机制。Sheppard,S.E。 ; Brying,L。; Wickramascaker,R.N。 ;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.) ; Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。 ; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。 ; Lim,C.Y。 ;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr ; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。 ;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。 ;干燥,d。码头,d。 Wormanmann,S.B。 ; Kamstean,E.J。 ; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals ; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。 ;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。 ;伊斯兰教。 Sidlik,J.A。 ;亨德森(L.B.)Sheppard,S.E。; Brying,L。; Wickramascaker,R.N。;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.); Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。; Lim,C.Y。;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。;干燥,d。码头,d。 Wormanmann,S.B。; Kamstean,E.J。; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。;伊斯兰教。 Sidlik,J.A。;亨德森(L.B.); Hennessy,L。; Raper,A。;父母,我。 Caiser,F.J。;有时,一个。布克,Ø.L。; Juusola,J。;人,r。 Schnur,R.E。; Vitobello,A。;银行; Bhoj,E.J。; Stepman,H.A.F。2023,文章 /编辑(Adventure Science,9,10,(2023),pp。EADE1463,第1463条)
这项研究涉及无人直升机的控制,强调形成控制,目标跟踪,避免障碍和连续性维护。该研究采用终端滑动模式控制(TSMC)来调节直升机的位置和态度,而通用的预测控制(GPC)策略则用于通过领导者追随者的方法来形成控制。使用人工电位(APF)方法实现避免障碍物。仿真结果表明,在六个不同的任务中,快速收敛时间不到三秒钟,这表明直升机在保持静态障碍和动态障碍的同时保持其形成的能力。最初的三个任务涉及在三角形形成中组织的三架直升机,成功地避免了障碍物并以低于1%的错误率保持连续性。随后的三个任务,涉及五架五角形配置的五架直升机,类似地说明了有效的导航和动态目标跟踪。值得注意的是,领导直升机始终跟踪静态和动态目标,以确保形成的完整性。这项研究通过探索多代理直升机操作和障碍物遍历的复杂性来促进该领域,从而强调了在动态场景中保持连通性和形成的关键重要性。这些发现强调了拟议的控制策略的有效性,为包括军事和民用领域在内的各个部门的未来应用提供了宝贵的见解。
©2025 nvent。所有NVENT标记和徽标均由Nvent Services GmbH或其分支机构拥有或许可。所有其他商标都是其各自所有者的财产。