靶向药物输送作为一种提高药物疗效同时降低对健康组织毒性的方法,已引起越来越多的关注。特别是抗体-药物偶联物 (ADC),即通过化学接头与药理活性分子 (有效载荷) 连接的 mAb,是最有前途的一类药物,具有显著而持久的治疗效果;它们已被用于治疗癌症 (1、2) 和其他疾病 (3、4)。此类药物的临床成功已得到证实,FDA 批准的 12 种 ADC 可用于治疗广泛的血液系统恶性肿瘤和实体瘤 (5),并且有 100 多种候选药物正在进行临床试验 (clinicaltrials.gov)。尽管 ADC 化学、肿瘤内科和临床管理方面取得了最新进展,但基于 ADC 的治疗通常伴有各种副作用,包括骨髓抑制和肝毒性。因此,能够最大限度降低不良反应风险的 ADC 技术可用于实施有效的癌症治疗,而不会损害患者的生活质量。 ADC 连接子是影响整体药物疗效和安全性的关键组成部分 (6, 7)。近 70% 的 ADC 使用可裂解连接子,以有效释放内部的结合有效载荷
摘要。人类大脑是复杂神经生物系统的核心,其中的神经元、电路和子系统以神秘的方式相互作用。了解大脑的结构和功能机制一直是神经科学研究和临床疾病治疗的有趣追求。将人类大脑的连接映射为网络是神经科学中最普遍的范例之一。图神经网络 (GNN) 最近成为一种对复杂网络数据进行建模的潜在方法。另一方面,深度模型的可解释性较低,这阻碍了它们在医疗保健等决策关键环境中的使用。为了弥补这一差距,我们提出了一个可解释的框架来分析特定于疾病的兴趣区域 (ROI) 和突出的连接。所提出的框架由两个模块组成:一个面向大脑网络的疾病预测骨干模型和一个全局共享的解释生成器,该生成器突出显示特定于疾病的生物标志物,包括显着的 ROI 和重要连接。我们对三个真实的脑部疾病数据集进行了实验。结果验证了我们的框架可以获得出色的性能并识别有意义的生物标志物。该工作的所有代码均可在 https://github.com/HennyJie/IBGNN 上找到。
衡量社会不良行为(如不诚实)的决定因素非常复杂,而且受社会期望偏见的影响。为了避免这些偏见,我们使用基于连接组的预测模型 (CPM) 来测量静息状态的功能连接模式,并结合一项新任务,该任务不引人注意地测量自愿作弊行为,以获得 (不) 诚实的神经认知决定因素。具体来说,我们研究了静息状态下大脑中与任务无关的神经模式是否可用于预测 (不) 诚实行为的倾向。我们的分析表明,功能连接,尤其是与自我参照思维 (vmPFC、颞极和 PCC) 和奖励处理 (尾状核) 相关的大脑网络之间的功能连接,在独立样本中与参与者的作弊倾向可靠相关。作弊最多的参与者在几项自我报告的冲动测量中也得分最高,这强调了我们结果的普遍性。值得注意的是,当比较神经和自我报告测量时,发现神经测量在预测作弊倾向方面更为重要。
目的:化疗是晚期结肠癌的主要治疗方法,但其疗效往往受到严重毒性的限制。以选择性药物输送系统 (SDDS) 形式的靶向治疗是减少副作用的重要策略。在这里,我们旨在设计一种具有实际应用潜力的新型 SDDS,使用生物相容性组件和可扩展的生产工艺,将阿霉素 (Dox) 靶向输送到结肠癌细胞。方法:SDDS 由自组装 DNA 纳米十字架 (Holliday 连接或 HJ) 制成,该十字架由四个 AS1411 适体 (Apt-HJ) 功能化并装载 Dox。结果:Apt-HJ 的平均尺寸为 12.45 nm,zeta 电位为 − 11.6 mV。与单价 AS1411 适体相比,四价 Apt-HJ 显示出与靶癌细胞 (CT26) 更强的结合。将 Dox 插入 Apt-HJ 的 DNA 结构中形成 Apt-HJ 与阿霉素的复合物 (Apt-HJ-Dox),每个复合物携带约 17 个 Dox 分子。共聚焦显微镜显示,Apt-HJ-Dox 选择性地将 Dox 递送到 CT26 结肠癌细胞中,但不递送到对照细胞中。此外,Apt-HJ-Dox 在体外实现了对 CT26 癌细胞的靶向杀伤,并减少了对对照细胞的损伤。重要的是,与游离 Dox 相比,Apt-HJ-Dox 显著增强了体内抗肿瘤效果,而不会增加副作用。结论:这些结果表明 Apt-HJ-Dox 在结肠癌的靶向治疗中具有应用潜力。关键词:结肠癌,靶向治疗,适体,霍利迪连接体,阿霉素
反应室,使其与之前的表面反应至饱和。在新的清洗步骤之后,以循环方式重复该过程,直到获得所需厚度。由于每个脉冲的自限制生长,每个脉冲只能将每种前驱体最多一个单层添加到基板上。当前驱体是成为薄膜一部分的较大有机分子时,通常将该过程称为分子层沉积 (MLD),16 我们的研究就是这种情况。MLD 技术可用于制备有机薄膜或有机 - 无机混合薄膜,以用于 Meng 等人在综述文章中总结的广泛应用。 17 最近的文献中出现了一些使用 MLD 制备 MOF 薄膜的例子,18 – 21 例如 UiO-66 生长的演示,22 以及具有氨基功能化连接体的类似 MOF 结构的生长。23