人们在电线“夹紧功能”的不起眼的绝缘体中投入了大量的专业知识。这是因为端子必须承受各种不利条件。根据相应的应用选择连接系统。仔细观察,对端子等所谓微不足道的组件的要求是相当高的。恰当地说,EN 60 947-7-1 将端子和电缆连接器定义为连接和接合电线的设备。端子可以并排或交错安装,具有两个或多个独立功能的连接点,并且彼此绝缘并且与其安装件绝缘。例如,它们安装在安装导轨上。除了连接线路之外,端子还具备其他功能:端子上带有标记,可以清晰地布置“电气装置”。此外,它们还创建了可根据需要扩展的明确连接点。
肯德尔·克拉克(Kendell Clark)是Lutron的商业系统产品经理,负责产品策略,完整产品生命周期管理和营销。肯德尔(Kendell)于2011年在卢特隆(Lutron)的职业生涯开始,在宾夕法尼亚州卢特隆(Lutron)的库珀·伯格(Coopers Burg)办事处担任电气设计工程师。他领导了几个Lutron商业壁箱,系统,传感器和LED驾驶员产品的开发和介绍。Kendell还花了一些时间从事系统销售角色,以帮助客户设计和指定Lutron系统。他对新技术充满热情,并向客户提供新的和令人兴奋的溶解性。
量子电路理论是一种强大且不断发展的工具,可预测超导电路的动力学。在其语言中,量子相滑(QPS)被认为是约瑟夫森效应的确切双重。然而,这种双重性使QPS连接的整合到一个统一的理论框架中非常困难,并且正如我们所表明的那样,会导致不同的形式主义的严重矛盾,在某些情况下,包括时间依赖时间依赖于时间依赖的流量驾驶。我们建议通过减少和压实描述QPS过程的希尔伯特空间来解决这些问题。我们的治疗方法是第一次对Aharonov-Bohm和Aharonov casher效应的统一描述,适当地定义了对环境的有效归纳相互作用的有效形式,并允许对最近如何包括电动力来考虑最近的见解。最后,我们表明,紧凑型对于正确预测涉及QPS连接的量子结构的可用计算空间同样重要。
•在美国新贝德福德的美国(美国)开设了我们的第23个Qualcomm®ThimebitLab™网站。Thinkabit Lab现在在八个州运营。•赞助了史密森尼国家自然历史博物馆的“手机:看不见的联系”,这是一个互动展览,讲述了半导体的故事。展览的重点是动力手机的矿物质,基础设施和人类创造力,以及半导体的积极的全球经济,社会和环境影响。•通过无线覆盖范围在巴西推出了校友Semper Conectado(“始终连接的学生”),以使学生和老师始终连接个人计算机(PC),虚拟现实(VR)体验和专业发展。•支持中国多个地区的“未来XR愿景”计划,将STEM教育和VR工具带到农村教师和学生,以帮助解决数字鸿沟。
简介。热力学相变描述了在外部参数的绝热变化下颗粒的宏观集合状态的变化。例如,某些电气导体从电阻状态(即正常导体n)转到临界温度以下以下的无耗散状态(超导体S)。同样,由两个S触点弱连接的约瑟夫森连接(JJ),当由大于临界电流i c大的直流电流驱动时,从零电阻态转换为电阻状态。当系统由迅速变化的参数驱动时,会发生动态相变,以使系统没有时间平衡。在这里,我们研究了超导体 /正常金属 /超导体连接(即SNS,即JJ,弱连接由正常金属组成的JJ)中的这种动态相变,该振幅和频率分别大于I C,并且分别在N中大于n,弱连接是正常金属组成的)。
与将储能技术(例如电池和水电存储)合并到太阳能PV安装中相关的挑战和机会,强调了存储在增强电网稳定性和最大化可再生能源利用率方面的作用。[9] Nwaigue等人(2019年)对太阳能光伏系统的智能电网整合进行了综述。The study examines the challenges and potential solutions for integrating solar PV into existing power grids, focusing on aspects like grid stability, power quality, and control strategies, highlighting the need for advanced grid management techniques to optimize solar PV integration [16] Raugei et al (2017) investigate the EROI of photovoltaic as compared to fossil fuel life cycles.该研究提出了一种评估Eroi的综合方法,并提供了有见地的比较,强调了太阳能光伏系统的有利能源回报特征。[21] 1.2基于ANFIS的MPPT技术Kumar等人(2021)描述了基于ANFIS的MPPT技术,用于独立太阳能PV系统。所提出的方法利用ANFI来估计最佳工作点,实现有效的跟踪性能并提高能量产量。[10] Bendary等人(2021)描述了用于光伏系统中MPPT的ANFIS(基于网络的模糊推理系统)。提议的基于ANFIS的MPPT控制器适应不断变化的环境条件,确保准确跟踪并提高整体系统效率。[11] G. Liu等(2020)引入了对独立太阳能PV系统的不同基于ANFIS的MPPT算法的比较研究。它由两个主要该研究评估了算法的跟踪准确性,收敛速度和稳定性,为选择最佳的基于ANFIS的MPPT方法提供了宝贵的见解。[14] U. Yilmaz等人(2019)开发了MPPT(“最大功率点跟踪”)方法。
2。物联网在流线型的自动可持续性报告中起关键作用。随着这些和即将到来的公司可持续性法规即将在全球范围内生效,公司越来越多地研究可持续性数据管理解决方案和物联网,以简化和自动化其可持续性数据管理和报告需求。基于物联网的传感器,例如能量计,水质传感器和空气污染监视器,是自动报告的重要技术构建块。例如,能量表可以跟踪和报告实时用电量,帮助公司监视和优化其能源消耗,而水质传感器则测量pH,温度和浊度等参数,以确保用水和处置符合环境标准。
摘要:生物大分子之间的相互作用(主要是非共价相互作用)支撑着生物过程。然而,生物特异性化学的最新进展使得在体外和体内生物分子之间能够形成特定的共价键。本综述追溯了蛋白质中生物特异性化学的演变,强调了遗传编码的潜在生物反应性氨基酸的作用。这些氨基酸通过邻近生物反应性与相邻的天然基团选择性反应,从而实现有针对性的共价键。我们探索了旨在靶向不同蛋白质残基、核糖核酸和碳水化合物的各种潜在生物反应性氨基酸。然后,我们讨论了这些新型共价键如何驱动具有挑战性的蛋白质特性并捕获体内瞬时蛋白质 - 蛋白质和蛋白质 - RNA 相互作用。此外,我们还研究了共价肽作为潜在治疗剂和天然抗体位点特异性结合物的应用,强调了它们与靶分子形成稳定连接的能力。重点关注近距离反应疗法 (PERx),这是共价蛋白疗法的一项开创性技术。我们详细介绍了它在免疫疗法、病毒中和和靶向放射性核素治疗中的广泛应用。最后,我们介绍了生物特异性化学领域目前面临的挑战,并讨论了这一快速发展领域未来探索和进步的潜在途径。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 8 月 2 日发布。;https://doi.org/10.1101/2023.08.01.551573 doi:bioRxiv 预印本