课程目标 1.了解人工智能和专家系统的基本概念。2. 提供人工智能所涉及的各种技术和工具的知识。单元 1 简介 简介:历史、人工智能的定义、人类认知过程的模拟、知识搜索权衡、存储知识、语义网络。建模的抽象视图、基础知识。计算逻辑、使用简单逻辑连接词分析复合语句、谓词逻辑、知识组织和操作、知识获取。单元 2 人工智能中的编程和逻辑 LISP 和其他编程语言 - LISP 简介、语法和数值函数、LISP 和 PROLOG 区别、输入输出和局部变量、交互和递归、属性列表和数组替代语言、形式化符号逻辑 - WFRS 的属性、非演绎推理方法。不一致和不确定性 - 真值维护系统、默认推理和封闭世界假设、模型和临时逻辑。单元 3 搜索方法和知识表示 模糊逻辑 - 概念、模糊逻辑简介(带示例)、概率推理、贝叶斯概率推理、Dempstor Shafer 理论、可能世界表示、Ad-Hoc 方法。结构知识:图形、框架和相关结构、面向对象表示 - 对象类、消息和方法、使用 OOPS 程序的模拟示例、OOP 语言。搜索和控制策略 - 概念、搜索问题、统一或 Blined 搜索、搜索 AND – OR 图。
在信息时代,对大型复杂数据集进行适当的融合是必要的。只需处理少量记录,人类大脑就不得不寻找数据中的模式并绘制整体图景,而不是将现实视为一组单独的实体,因为处理和分析这些实体要困难得多。同样,使用适当的方法减少计算机上的信息过载,不仅可以提高结果的质量,还可以显著减少算法的运行时间。众所周知,依赖单一信息源的信息系统(例如,从一个传感器收集的测量值、单个权威决策者的意见、一个且只有一个机器学习算法的输出、单个社会调查参与者的答案)通常既不准确也不可靠。聚合理论是一个相对较新的研究领域,尽管古代数学家已经知道并使用了各种特定的数据融合方法。自 20 世纪 80 年代以来,聚集函数的研究通常集中于构造和形式化数学分析各种方法来汇总元素在某个实区间 I = [ a, b ] 中的数值列表。这涵盖了不同类型的广义均值、模糊逻辑连接词(t 范数、模糊蕴涵)以及 copula。最近,我们观察到人们对偏序集上的聚集越来越感兴趣,特别是在序数(语言)尺度上。在面向应用数学的古典聚集理论方面,具有开创性的专著包括 Beliakov、Pradera 和 Calvo 撰写的《聚集函数:从业者指南》[49] 以及 Grabisch、Marichal、Mesiar 和 Pap 撰写的《聚集函数》[230]。我们注意到,聚合理论家使用的典型数学武器库包括代数、微积分、序和测度理论等方法的非常有创意的组合(事实上,聚合理论的结果也对这些子领域做出了很大的贡献)。此外,以下教科书深入研究了聚合函数的特定子类:三角范数[277],作者