Parkin是一种高度验证的E3泛素连接酶,具有神经病学具有治疗潜力,Nysnobio的我们致力于研究它。使用Parkin基因治疗的神经保护症已经通过使用既定模型系统的动物研究来验证。也有一系列数据来验证帕克蛋白蛋白防止细胞应激的能力的有效性。由于这些原因,我们能够快速将临床前验证转化为我们目前的辅助研究状态。
图 2:模型概述。所研究蛋白质的 PDB 文件用于生成其图形表示。然后,将 POI 和 E3 连接酶的这些图形表示传递到预先训练的 GearNet 进行特征提取,同时从 PROTAC 组件的 SMILES 中收集指纹。然后将各个特征连接起来,并将连接的向量传递到机器学习模型(XGBoost、随机森林或 MLP)以预测 PROTAC 的 DC 50 值。单个示例的多格式标签允许在回归和分类任务中训练所研究的模型。
单元1分子生物学和遗传工程DNA复制,转录和翻译,限制酶,连接酶和分子克隆,PCR,PCR,凝胶电泳和Southern印迹,基因编辑技术(CRISPR- CAS9),质粒,载体,载体和可选标记。生物过程工程和应用发酵过程和生物反应器,下游加工,生物技术的工业应用(农业,药品,环境)。重组DNA技术克隆载体,基因库和cDNA合成,重组蛋白的表达,生物的遗传操纵。
一锅法组装来自多个组成部分的长 DNA 序列是快速生成现代合成生物学构建体的关键。一锅法组装由短悬垂结构(例如 Golden Gate)连接的多个片段的方法取决于准确和无偏的连接。迄今为止,连接点的设计很大程度上取决于经验法则和经验成功,而不是连接酶保真度和偏向性的详细数据。在本研究中,我们应用 Pacific Biosciences 单分子实时测序技术在一次实验中直接测量每个可能的 5′-四碱基悬垂结构配对的连接频率。该综合数据集已用于预测使用 IIS 型限制性酶 BsaI 的 Golden Gate 组装 (GGA) 的准确性。根据连接数据设计了十个片段组装,其中连接点预测会导致高或低保真度组装。实验结果不仅证实了总体准确性,还证实了观察到的特定错配连接错误及其相对频率。这些数据还用于设计 12 或 24 个片段的乳糖操纵子组装体,结果表明组装体具有高保真度和高效率。因此,连接酶保真度数据可以预测高精度突出端对集,设计灵活性比经验法则更高,即使在定义的编码区域内也可以在高精度连接点组装 20 多个片段,而无需修改天然 DNA 序列。
多个组件部分的长DNA序列的一锅组装是现代合成生物学构建的迅速产生的关键。的一锅组装方法的方法是由短悬垂链接的多个片段(例如金门)取决于准确和公正的连接。迄今为止的连接设计很大程度上取决于使用经验法则和经验成功的使用,而不是有关连接酶保真度和偏见的详细数据。在这项研究中,我们应用了太平洋生物科学单分子实时测序技术来直接测量单个实验中每个可能的5'基础悬垂配对的连接频率。使用IIS类型限制酶BSAI,已应用此综合数据集来预测金门组装(GGA)的准确性。基于连接数据设计的十个片段组件,其连接数据预计会导致高或低的保真度组件。实验结果不仅证实了总体准确性,还确认了观察到的特定不匹配连接误差及其相对频率。数据进一步用于设计LAC操纵子的12-或24-片段组件,这些组件被证明以高忠诚度和效率组装。因此,连接酶保真度数据允许预测高准确的悬垂对套件的设计比经验法则更大的灵活性,即使在定义的编码区域内,也可以在没有天然DNA序列修改的情况下,在高准确的连接点上安装> 20个片段。
多个组件部分的长DNA序列的一锅组装是现代合成生物学构建的迅速产生的关键。的一锅组装方法的方法是由短悬垂链接的多个片段(例如金门)取决于准确和公正的连接。迄今为止的连接设计很大程度上取决于使用经验法则和经验成功的使用,而不是有关连接酶保真度和偏见的详细数据。在这项研究中,我们应用了太平洋生物科学单分子实时测序技术来直接测量单个实验中每个可能的5'基础悬垂配对的连接频率。使用IIS类型限制酶BSAI,已应用此综合数据集来预测金门组装(GGA)的准确性。基于连接数据设计的十个片段组件,其连接数据预计会导致高或低的保真度组件。实验结果不仅证实了总体准确性,还确认了观察到的特定不匹配连接误差及其相对频率。数据进一步用于设计LAC操纵子的12-或24-片段组件,这些组件被证明以高忠诚度和效率组装。因此,连接酶保真度数据允许预测高准确的悬垂对套件的设计比经验法则更大的灵活性,即使在定义的编码区域内,也可以在没有天然DNA序列修改的情况下,在高准确的连接点上安装> 20个片段。
106560268 LNX E3泛素 - 蛋白蛋白连接酶LNX类似于y n -3.45 -3.09降低106584115 lnx1 numb蛋白x 1,e3 ubiquitin X 1,ubiquitin y n -3.43(-3.43(-3.43)的配体-3.81-下降106564992 GM525未表征的蛋白C17orf67同源物N 3.99 3.99 3.84 UP 106573666 CHST6 CHST6碳水化合物硫酸盐硫酸盐转移酶6 -like N N N N N N N(3.2)3.47 UP
E3 Sumo蛋白连接酶CBX4(CBX4)是PolyComb-抑制复合物1(PRC1)的关键组成部分,据报道调节与肿瘤生长,转移和血管生成有关的多种基因。然而,其在T细胞介导的抗肿瘤免疫中的作用仍然难以捉摸。为了阐明这个问题,我们生成了用CBX4的T细胞特异性缺失的小鼠。敲除小鼠的肿瘤生长增加。此外,它们的肿瘤锻炼淋巴细胞表现出受损的肿瘤坏死因子-Alpha(TNF-A)和干扰素 - 伽马(IFN-C)的产生,其程序性细胞死亡蛋白1(PD-1)水平升高。实际上,在基因敲除小鼠的所有主要的外围T细胞的主要子集中观察到了失调的PDCD1表达,响应于T细胞受体(TCR)刺激,敲除小鼠的所有主要子集都伴有功能缺陷。在支持CBX4和PD-1之间的直接联系时,CBX4过表达导致PDCD1表达的下调。表观遗传分析表明,CBX4的缺乏会导致PDCD1启动子的抑制性组蛋白修饰的积累减少(H3K27me3)。此外,抑制多孔抑制复合物1(PRC1)的E3连接酶活性或多孔反向反应复合物2(PRC2)的甲基转移酶活性恢复了CBX4转染的细胞中的PDCD1表达。累积地,这项研究揭示了CBX4在调节T细胞功能中的新功能,并扩展了我们对PDCD1表达的表观遗传控制的理解。
多个组件部分的长DNA序列的一锅组装是现代合成生物学构建的迅速产生的关键。的一锅组装方法的方法是由短悬垂链接的多个片段(例如金门)取决于准确和公正的连接。迄今为止的连接设计很大程度上取决于使用经验法则和经验成功的使用,而不是有关连接酶保真度和偏见的详细数据。在这项研究中,我们应用了太平洋生物科学单分子实时测序技术来直接测量单个实验中每个可能的5'基础悬垂配对的连接频率。使用IIS类型限制酶BSAI,已应用此综合数据集来预测金门组装(GGA)的准确性。基于连接数据设计的十个片段组件,其连接数据预计会导致高或低的保真度组件。实验结果不仅证实了总体准确性,还确认了观察到的特定不匹配连接误差及其相对频率。数据进一步用于设计LAC操纵子的12-或24-片段组件,这些组件被证明以高忠诚度和效率组装。因此,连接酶保真度数据允许预测高准确的悬垂对套件的设计比经验法则更大的灵活性,即使在定义的编码区域内,也可以在没有天然DNA序列修改的情况下,在高准确的连接点上安装> 20个片段。
第一单元 遗传工程简介。DNA、RNA 和蛋白质分析方法:琼脂糖凝胶电泳、Southern 和 Northern 印迹技术、点印迹、SDS-PAGE 和 Western 印迹。DNA 修饰酶及其应用:限制酶、DNA 聚合酶。末端脱氧核苷酸转移酶、激酶和磷酸酶以及 DNA 连接酶。第二单元 聚合酶链式反应。C-DNA 合成和克隆:mRNA 富集、逆转录、接头、衔接子、平端连接、同聚物加尾。基因组和 cDNA 文库:制备和用途、基因组测序。DNA 测序:传统和自动测序。