图 1. 单级连续培养(a)和两级连续培养(b)的示意图。在两级连续培养(b)中,橙色箭头、虚线框和字母代表计算整个过程的生物质和乙醇酸生产率的过程和参数。
Valley Delmech,Nadia Perthat,Oriane Monet,外国Marion,Darii Ecataria和Al。插入Methabolia,2022,72,pp.200-214。10.1016/j.ymben.2022.03.010。
[3]。微藻生物量中碳水化合物的发酵是生产生物燃料的替代途径,尤其是因为某些微藻物种的淀粉,葡萄糖和/或纤维素在干重的基础上超过50%,没有木质素含量[4,5]。已经开发出各种方法将藻类生物量碳水化合物水解成可发酵的化合物[2,6,7]。尽管碳水化合物占干重的40%或更高的微藻生物量,但藻类水解物通常含有低糖浓度。例如,使用H 2 SO 4对小球藻生物量的水解产生了15 g/L的可发酵糖[8]。因此,对糖浓度相对较低的水解物必须有效,以实现高产量,糖转化率和生产力。具有游离细胞的传统发酵在可以实现的糖转换的体积生产率和程度上受到限制。批处理发酵的糖转化率很高,但体积生产力较低,尤其是当考虑排水,清洁和填充生物参与者的时间时。饲料批次发酵可以提高生产率,但仅适用于具有高糖浓度的原料,而生物质水解物并非总是可能的。最后,与游离细胞的连续培养的体积产生性受到生物催化剂的特异性生长速率的限制,尤其是对于糖浓度较低的水解产物。当使用游离细胞时,连续培养中的糖含量也很低。由于细胞保留在反应堆内,与生长速率的解耦操作相比,固定的细胞技术具有比使用自由细胞的固定型生产率明显更高的体积生产率[9,10]。细胞固定还可以促进其他策略,以提高糖至产品转化的产量(碳转化效率)以及下游加工的成本较低[11]。不合理的酵母细胞。
培养和生长营养类型:光养生物、化能生物及其亚群。自养生物和异养生物。培养基类型:合成、复合、富集、富集、选择性、分化、脱水固体和液体。培养基中的盐和 pH 值。细菌的营养需求和营养类别。细胞生长/群体生长的定义;世代时间 - 定义和公式、细菌生长曲线、生长阶段的特征。批量/连续培养:原理、稳定状态、化学恒化器/浊度恒化器。微生物控制的物理方法:加热、低温、过滤;渗透压干燥、微生物控制的化学方法;消毒剂。微生物实验室的仪器。微生物学良好实验室规范 (GLP) 和生物安全。实验室培养基的制备:蛋白胨水、营养肉汤和琼脂、斜面和底部的制备、萨博罗氏肉汤和琼脂、麦康凯氏肉汤和琼脂。大肠杆菌的生长曲线。运动性、染色、显微镜计数、干重、湿重、生物方法:SPC(连续稀释、活菌计数、菌落计数)、MPN。
鉴于生物过程扩大规模的必要性,本研究旨在探索以半连续模式种植的三个海洋蓝细菌和一个财团的潜力,作为I)连续富含外多糖的生物量的绿色方法,富含外多糖的生物量生产并ii)从MONO,NI,NI,MONO和MONO的阳性收费中的MONO和MONO的阳性收费中的MONO和MONO索取。为了确保细胞和释放的外多糖的有效性,每周收获的整个培养物被限制在透析管中。结果表明,所有测试的蓝细菌对单声道和三级系统的CU具有更强的亲和力。尽管每克生物量除去的金属量随着较高的生物吸附剂剂量降低,但产生了越溶的碳水化合物,金属摄取量就越大,强调了释放的外多糖在金属生物吸附中的关键作用。据此,dactylocopopopsis salina 16som2显示出最高的碳水化合物产生性(142 mg l -1 d -1)和金属摄取(84 mg cu g -1生物量),代表有前途的候选者,用于进一步研究。在这里报道的海洋蓝细菌的半连续培养可确保可计划生产具有高金属去除和恢复潜力的富含外多糖的生物吸附剂,即使是从多金属溶液中,也是氰基杆菌的工业应用中迈出的一步。
各种方案已被证明可有效地将小鼠和人多能干细胞分化为骨骼肌,并用于研究肌发生。当前的2D肌源分化方案可以模仿肌肉发育及其在诸如肌肉营养不良等病理状况下的改变。3D骨骼肌分化方法还可以模拟发育中的器官中各种细胞类型之间的相互作用。我们的协议确保通过具有近似性中胚层和神经抑制剂的近端和神经抑制剂的身份和神经板板板和外瘤的有组织结构进一步产生的细胞,通过细胞通过细胞通过细胞通过细胞将人类胚胎/诱导的多能干细胞(HESC/HIPSC)分化为骨骼肌器官(SMO)。连续培养忽略了神经谱系分化并促进胎儿肌发生,包括纤维化孕育祖细胞和PAX7阳性肌源祖细胞的成熟。PAX7祖细胞类似于人类发育的晚期阶段,并且基于单细胞的转录组分析,聚集在接近原代肌肉的成年卫星细胞附近。为了克服疾病进展过程中肌肉营养不良患者的肌肉活检的有限可用性,我们建议使用SMO系统,SMO系统提供了从患者特异性IPSC中提供稳定的骨骼肌祖细胞,以研究健康和患病状况中人类肌肉的研究。
选择最合适的保存方法对于维持生物中微生物的生命力,交流电,免疫原性和遗传稳定性至关重要(Simões2013)。最常见的保存技术是基于通过亚培养或通过脱水和冻结来维持持续生长的持续生长(Agarwal and Sharma 2006)。连续培养仅用于短期存储(Ryan等人。2000)由于该方法是费力的,并且经常重新培养可能会导致污染或SUD DEN菌株变性,这可能会导致病学,生理或毒力变化(Vasas等人。1998; Shivas等。 2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。1998; Shivas等。2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。2005; Bégaud等。2012; 2013)。此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人2000; Ryan等。2019)。因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人2019)。
微流控装置与荧光显微镜相结合,提供了高分辨率和高内涵的平台,用于研究芽殖酵母酿酒酵母的单细胞形态、行为和复制衰老的动态过程。然而,大量记录的图像使得数据处理工作非常耗费人力和时间,而酵母复制寿命 (RLS) 是酵母衰老的主要标准。为了解决这一限制并进行无标记的 RLS 分析,引入了可通过微流控装置中的微电极轻松功能化的电阻抗谱 (EIS) 来监测芽殖酵母的细胞生长和分裂。在此,提出了一种集成 EIS 生物传感器的微流控装置,以单细胞分辨率进行酵母增殖的原位阻抗测量,从而识别子代从母代分离的瞬时事件。单个酵母细胞被可靠地固定在瓶颈状陷阱中以进行连续培养,在此过程中子细胞在水力剪切力的作用下有效地从母细胞中分离出来。每 2 分钟进行一次延时阻抗测量以监测细胞过程,包括出芽、分裂和解剖。通过使用 K 均值聚类算法首次分析自定义参数“解剖指标”,从 EIS 信号中准确提取了子细胞脱离母细胞的瞬时事件。从而验证了基于阻抗传感技术识别子细胞解剖事件。随着进一步的发展,这种集成电阻抗生物传感器的微流控装置在高通量、实时、无标记分析出芽酵母的衰老和 RLS 方面具有良好的应用前景。
在生物技术中,批处理培养物涉及在开始时将所有培养基组件放在反应堆中,除了大气气体和其他控制剂。这会随着时间的推移而创建一个不稳定的系统,而营养浓度不断变化。饲料批量文化通过无菌添加营养来修改这种修改,从而创建一个半开放的系统,其中液体培养体积随系统添加而增加。这种方法提高了生产率,产生更好的结果并允许更高的细胞密度。连续培养是一个连续的过程,在该过程中,添加营养并同时去除培养汤,由于平衡的进料和进料速率而保持恒定体积。比较这些方法揭示了关键差异:批处理文化使用封闭的系统,一开始就提供了所有营养,而Fed Batch则使用具有系统添加的半关闭系统。连续培养在开放系统中运行,并具有连续的营养添加和去除。过程的持续时间也有所不同,当产品形成时,批处理和批量停止,而连续文化通过不断删除产品来保持生产。微生物在每种方法中都经历不同的阶段:批处理和饲料批次经历滞后,原木,固定和死亡阶段,而连续培养物将微生物保持在滞后和对数阶段。这些方法之间的内部环境和养分量也有所不同,批处理具有不稳定的环境和恒定的营养量,饲料批量保持恒定的环境,养分量增加,并且连续培养保持环境和营养量稳定。4。•发酵过程在开始时将环境从外部转变为内部。•营养水平和条件会影响微生物的周转率,这在两者都保持良好时是最佳的。•控制微生物生长和所需产品在发酵过程中有所不同。•批处理培养物利用大型发酵罐,而饲料群则使用小型发酵罐,并且连续培养物使用小型发酵罐。•建立批处理文化很简单,而建立饲料批次或连续文化则需要更多的复杂性和精力。•产品的产量在发酵类型上有所不同,在某些过程中看到了高收率。•劳动需求根据发酵的类型而有所不同,其中一些人需要比其他人少的劳动力。•投资要求也有所不同,某些流程需要比其他流程更高的投资。•控制方法可以简单,快速或复杂,并且取决于所使用的发酵技术。•发酵主要用于生产二级产品,例如抗生素和重组蛋白。•最终产品是通过下游处理步骤获得的。综合生物技术(2017)Yang&Sha,“生物处理模式的初学者指南,美联储批次和连续发酵” doi:10.1016/b978-08-08-0888504-9.00112-4。本文概述了Fed Batch反应堆培养物,这是一种生物技术过程,在培养过程中,将一种或多种营养素喂给生物反应器,从而可以控制底物浓度。这种现象称为分解代谢物抑制。在控制营养水平会影响产品产量或生产力的情况下,该技术很有用。饲喂群培养特别有效。这些酸的形成称为细菌crabtree效应。分解代谢物抑制在微生物中提供了易于代谢能源(如葡萄糖)时,ATP浓度的增加会导致抑制酶的生物合成,从而导致能源源代谢较慢。许多参与分解代谢途径的酶都受到这种调节的约束。一种克服分解代谢物抑制的方法是饲喂群培养物,在该培养物中,葡萄糖浓度保持较低并受到生长的限制,从而使酶生物合成消除。青霉子素的青霉素发酵就是一个例子。5。使用需要特定养分的可营养性突变体在微生物过程中的,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。 所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。所需养分的饥饿减缓了细胞的生长和产生。通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。6。指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。7。用抑制启动子对基因的表达控制抑制启动子的基因的转录被DNA上的全抑制剂和操作员区域的组合抑制。美联储文化允许这样做。示例包括TRP启动子和Phoa启动子。延长运营时间,补充水分流失和降低培养汤粘度粘度的饲料批次策略用于工业生物过程中,以达到高细胞密度。通常,饲料溶液高度浓缩以避免生物反应器稀释。蛋白质已广泛研究其生长模式和局限性。该方法涉及以精确的速度将营养直接添加到培养物中,这有助于防止形成不良的副产品和氧气稀缺。该技术对于维持微生物繁殖的稳定环境至关重要。一种类型的Fed批次培养物,称为不断喂养的批量培养(CFBC),涉及在整个过程中以恒定的速率喂养限制生长的底物。该方法在数学上和实验上都得到了良好的建立,并且可以适用于固定容量或可变体积系统。在理想的情况下,细胞成倍地生长,通过按照这种生长成比例调整进料速率,可以维持细胞的特定生长速度,同时保持底物浓度恒定。这种方法允许对反应速率进行更多控制,并防止技术局限性,例如反应堆或氧转移困难中的冷却问题。指数填充的批量培养(EFBC)是另一种变化,涉及随着时间的时间呈指数增长的饲料率,以匹配细胞的指数生长速率。此外,它提供了代谢控制,以防止渗透作用,分解代谢产物抑制和形成不良的副产品。可以采用不同的策略来控制喂养过程中的生长,包括控制参数,例如氧气水平,葡萄糖浓度,pH,氨水水平和温度。这些方法对于维持微生物产生所需蛋白质的最佳条件至关重要,同时最大程度地减少了不需要的副产品的产生。大肠杆菌高细胞密度的生物层化方法
肿瘤抑制磷酸酶和Tensin同源物(PTEN)负调节胰岛素信号通路。种系PTEN致病性变异引起与儿童脂肪瘤发育相关的PTEN Hamartoma肿瘤综合征(PHTS)。脂肪祖细胞(APC)在连续培养过程中失去了分化为脂肪细胞的能力,而PHTS患者的脂肪瘤的APC在长时间内保留其脂肪生成潜力。仍然不清楚哪种机制会触发这种异常的脂肪组织生长。为了研究PTEN在脂肪组织发育中的作用,我们进行了功能性测定和对照和PTEN敲低APC的RNA-SEQ。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。 已知叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。 FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。 sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。 为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。 我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。细胞衰老是PTEN敲低与对照细胞的RNA-Seq中发现的最显着富集的途径。这些结果提供了证据,表明PTEN参与了APC增殖,差异和衰老的调节,从而导致PHT患者的异常脂肪组织生长。